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Prefae

These letures represent an introdutory graduate ourse in general relativity, both its foun-

dations and appliations. They are a lightly edited version of notes I handed out while

teahing Physis 8.962, the graduate ourse in GR at MIT, during the Spring of 1996. Al-

though they are appropriately alled \leture notes", the level of detail is fairly high, either

inluding all neessary steps or leaving gaps that an readily be �lled in by the reader. Never-

theless, there are various ways in whih these notes di�er from a textbook; most importantly,

they are not organized into short setions that an be approahed in various orders, but are

meant to be gone through from start to �nish. A speial e�ort has been made to maintain

a onversational tone, in an attempt to go slightly beyond the bare results themselves and

into the ontext in whih they belong.

The primary question faing any introdutory treatment of general relativity is the level

of mathematial rigor at whih to operate. There is no uniquely proper solution, as di�erent

students will respond with di�erent levels of understanding and enthusiasm to di�erent

approahes. Reognizing this, I have tried to provide something for everyone. The letures

do not shy away from detailed formalism (as for example in the introdution to manifolds),

but also attempt to inlude onrete examples and informal disussion of the onepts under

onsideration.

As these are advertised as leture notes rather than an original text, at times I have

shamelessly stolen from various existing books on the subjet (espeially those by Shutz,

Wald, Weinberg, and Misner, Thorne and Wheeler). My philosophy was never to try to seek

originality for its own sake; however, originality sometimes rept in just beause I thought

I ould be more lear than existing treatments. None of the substane of the material in

these notes is new; the only reason for reading them is if an individual reader �nds the

explanations here easier to understand than those elsewhere.

Time onstraints during the atual semester prevented me from overing some topis in

the depth whih they deserved, an obvious example being the treatment of osmology. If

the time and motivation ome to pass, I may expand and revise the existing notes; updated

versions will be available at http://itp.usb.edu/~arroll/notes/. Of ourse I will

appreiate having my attention drawn to any typographial or sienti� errors, as well as

suggestions for improvement of all sorts.

Numerous people have ontributed greatly both to my own understanding of general

relativity and to these notes in partiular | too many to aknowledge with any hope of

ompleteness. Speial thanks are due to Ted Pyne, who learned the subjet along with me,

taught me a great deal, and ollaborated on a predeessor to this ourse whih we taught

as a seminar in the astronomy department at Harvard. Nik Warner taught the graduate

ourse at MIT whih I took before ever teahing it, and his notes were (as omparison will

http://itp.ucsb.edu/~carroll/notes/
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reveal) an important inuene on these. George Field o�ered a great deal of advie and

enouragement as I learned the subjet and struggled to teah it. Tam�as Hauer struggled

along with me as the teahing assistant for 8.962, and was an invaluable help. All of the

students in 8.962 deserve thanks for tolerating my idiosynrasies and prodding me to ever

higher levels of preision.

During the ourse of writing these notes I was supported by U.S. Dept. of Energy on-

trat no. DE-AC02-76ER03069 and National Siene Foundation grants PHY/92-06867 and

PHY/94-07195.
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1 Speial Relativity and Flat Spaetime

We will begin with a whirlwind tour of speial relativity (SR) and life in at spaetime.

The point will be both to reall what SR is all about, and to introdue tensors and related

onepts that will be ruial later on, without the extra ompliations of urvature on top

of everything else. Therefore, for this setion we will always be working in at spaetime,

and furthermore we will only use orthonormal (Cartesian-like) oordinates. Needless to say

it is possible to do SR in any oordinate system you like, but it turns out that introduing

the neessary tools for doing so would take us halfway to urved spaes anyway, so we will

put that o� for a while.

It is often said that speial relativity is a theory of 4-dimensional spaetime: three of

spae, one of time. But of ourse, the pre-SR world of Newtonian mehanis featured three

spatial dimensions and a time parameter. Nevertheless, there was not muh temptation to

onsider these as di�erent aspets of a single 4-dimensional spaetime. Why not?

space at a
fixed time

t

x, y, z

Consider a garden-variety 2-dimensional plane. It is typially onvenient to label the

points on suh a plane by introduing oordinates, for example by de�ning orthogonal x and

y axes and projeting eah point onto these axes in the usual way. However, it is lear that

most of the interesting geometrial fats about the plane are independent of our hoie of

oordinates. As a simple example, we an onsider the distane between two points, given

1
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by

s

2

= (�x)

2

+ (�y)

2

: (1.1)

In a di�erent Cartesian oordinate system, de�ned by x

0

and y

0

axes whih are rotated with

respet to the originals, the formula for the distane is unaltered:

s

2

= (�x

0

)

2

+ (�y

0

)

2

: (1.2)

We therefore say that the distane is invariant under suh hanges of oordinates.

∆

∆

∆

y

x’

x

y

y’

x

x’

s

y’

∆

∆

This is why it is useful to think of the plane as 2-dimensional: although we use two distint

numbers to label eah point, the numbers are not the essene of the geometry, sine we an

rotate axes into eah other while leaving distanes and so forth unhanged. In Newtonian

physis this is not the ase with spae and time; there is no useful notion of rotating spae

and time into eah other. Rather, the notion of \all of spae at a single moment in time"

has a meaning independent of oordinates.

Suh is not the ase in SR. Let us onsider oordinates (t; x; y; z) on spaetime, set up in

the following way. The spatial oordinates (x; y; z) omprise a standard Cartesian system,

onstruted for example by welding together rigid rods whih meet at right angles. The rods

must be moving freely, unaelerated. The time oordinate is de�ned by a set of loks whih

are not moving with respet to the spatial oordinates. (Sine this is a thought experiment,

we imagine that the rods are in�nitely long and there is one lok at every point in spae.)

The loks are synhronized in the following sense: if you travel from one point in spae to

any other in a straight line at onstant speed, the time di�erene between the loks at the
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ends of your journey is the same as if you had made the same trip, at the same speed, in the

other diretion. The oordinate system thus onstruted is an inertial frame.

An event is de�ned as a single moment in spae and time, haraterized uniquely by

(t; x; y; z). Then, without any motivation for the moment, let us introdue the spaetime

interval between two events:

s

2

= �(�t)

2

+ (�x)

2

+ (�y)

2

+ (�z)

2

: (1.3)

(Notie that it an be positive, negative, or zero even for two nonidential points.) Here, 

is some �xed onversion fator between spae and time; that is, a �xed veloity. Of ourse

it will turn out to be the speed of light; the important thing, however, is not that photons

happen to travel at that speed, but that there exists a  suh that the spaetime interval

is invariant under hanges of oordinates. In other words, if we set up a new inertial frame

(t

0

; x

0

; y

0

; z

0

) by repeating our earlier proedure, but allowing for an o�set in initial position,

angle, and veloity between the new rods and the old, the interval is unhanged:

s

2

= �(�t

0

)

2

+ (�x

0

)

2

+ (�y

0

)

2

+ (�z

0

)

2

: (1.4)

This is why it makes sense to think of SR as a theory of 4-dimensional spaetime, known

as Minkowski spae. (This is a speial ase of a 4-dimensional manifold, whih we will

deal with in detail later.) As we shall see, the oordinate transformations whih we have

impliitly de�ned do, in a sense, rotate spae and time into eah other. There is no absolute

notion of \simultaneous events"; whether two things our at the same time depends on the

oordinates used. Therefore the division of Minkowski spae into spae and time is a hoie

we make for our own purposes, not something intrinsi to the situation.

Almost all of the \paradoxes" assoiated with SR result from a stubborn persistene of

the Newtonian notions of a unique time oordinate and the existene of \spae at a single

moment in time." By thinking in terms of spaetime rather than spae and time together,

these paradoxes tend to disappear.

Let's introdue some onvenient notation. Coordinates on spaetime will be denoted by

letters with Greek supersript indies running from 0 to 3, with 0 generally denoting the

time oordinate. Thus,

x

�

:

x

0

= t

x

1

= x

x

2

= y

x

3

= z

(1.5)

(Don't start thinking of the supersripts as exponents.) Furthermore, for the sake of sim-

pliity we will hoose units in whih

 = 1 ; (1.6)
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we will therefore leave out fators of  in all subsequent formulae. Empirially we know that

 is the speed of light, 3�10

8

meters per seond; thus, we are working in units where 1 seond

equals 3�10

8

meters. Sometimes it will be useful to refer to the spae and time omponents

of x

�

separately, so we will use Latin supersripts to stand for the spae omponents alone:

x

i

:

x

1

= x

x

2

= y

x

3

= z

(1.7)

It is also onvenient to write the spaetime interval in a more ompat form. We therefore

introdue a 4 � 4 matrix, the metri, whih we write using two lower indies:

�

��

=

0

B

B

B

�

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

: (1.8)

(Some referenes, espeially �eld theory books, de�ne the metri with the opposite sign, so

be areful.) We then have the nie formula

s

2

= �

��

�x

�

�x

�

: (1.9)

Notie that we use the summation onvention, in whih indies whih appear both as

supersripts and subsripts are summed over. The ontent of (1.9) is therefore just the same

as (1.3).

Now we an onsider oordinate transformations in spaetime at a somewhat more ab-

strat level than before. What kind of transformations leave the interval (1.9) invariant?

One simple variety are the translations, whih merely shift the oordinates:

x

�

! x

�

0

= x

�

+ a

�

; (1.10)

where a

�

is a set of four �xed numbers. (Notie that we put the prime on the index, not on

the x.) Translations leave the di�erenes �x

�

unhanged, so it is not remarkable that the

interval is unhanged. The only other kind of linear transformation is to multiply x

�

by a

(spaetime-independent) matrix:

x

�

0

= �

�

0

�

x

�

; (1.11)

or, in more onventional matrix notation,

x

0

= �x : (1.12)

These transformations do not leave the di�erenes �x

�

unhanged, but multiply them also

by the matrix �. What kind of matries will leave the interval invariant? Stiking with the

matrix notation, what we would like is

s

2

= (�x)

T

�(�x) = (�x

0

)

T

�(�x

0

)

= (�x)

T

�

T

��(�x) ; (1.13)
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and therefore

� = �

T

�� ; (1.14)

or

�

��

= �

�

0

�

�

�

0

�

�

�

0

�

0

: (1.15)

We want to �nd the matries �

�

0

�

suh that the omponents of the matrix �

�

0

�

0

are the

same as those of �

��

; that is what it means for the interval to be invariant under these

transformations.

The matries whih satisfy (1.14) are known as the Lorentz transformations; the set

of them forms a group under matrix multipliation, known as the Lorentz group. There is

a lose analogy between this group and O(3), the rotation group in three-dimensional spae.

The rotation group an be thought of as 3� 3 matries R whih satisfy

1 = R

T

1R ; (1.16)

where 1 is the 3 � 3 identity matrix. The similarity with (1.14) should be lear; the only

di�erene is the minus sign in the �rst term of the metri �, signifying the timelike diretion.

The Lorentz group is therefore often referred to as O(3,1). (The 3 � 3 identity matrix is

simply the metri for ordinary at spae. Suh a metri, in whih all of the eigenvalues are

positive, is alled Eulidean, while those suh as (1.8) whih feature a single minus sign are

alled Lorentzian.)

Lorentz transformations fall into a number of ategories. First there are the onventional

rotations, suh as a rotation in the x-y plane:

�

�

0

�

=

0

B

B

B

�

1 0 0 0

0 os � sin � 0

0 � sin � os � 0

0 0 0 1

1

C

C

C

A

: (1.17)

The rotation angle � is a periodi variable with period 2�. There are also boosts, whih

may be thought of as \rotations between spae and time diretions." An example is given

by

�

�

0

�

=

0

B

B

B

�

osh� � sinh� 0 0

� sinh� osh� 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

: (1.18)

The boost parameter �, unlike the rotation angle, is de�ned from �1 to 1. There are

also disrete transformations whih reverse the time diretion or one or more of the spa-

tial diretions. (When these are exluded we have the proper Lorentz group, SO(3,1).) A

general transformation an be obtained by multiplying the individual transformations; the
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expliit expression for this six-parameter matrix (three boosts, three rotations) is not suÆ-

iently pretty or useful to bother writing down. In general Lorentz transformations will not

ommute, so the Lorentz group is non-abelian. The set of both translations and Lorentz

transformations is a ten-parameter non-abelian group, the Poinar�e group.

You should not be surprised to learn that the boosts orrespond to hanging oordinates

by moving to a frame whih travels at a onstant veloity, but let's see it more expliitly.

For the transformation given by (1.18), the transformed oordinates t

0

and x

0

will be given

by

t

0

= t osh �� x sinh �

x

0

= �t sinh�+ x osh � : (1.19)

From this we see that the point de�ned by x

0

= 0 is moving; it has a veloity

v =

x

t

=

sinh�

osh �

= tanh � : (1.20)

To translate into more pedestrian notation, we an replae � = tanh

�1

v to obtain

t

0

= (t� vx)

x

0

= (x� vt) (1.21)

where  = 1=

p

1� v

2

. So indeed, our abstrat approah has reovered the onventional

expressions for Lorentz transformations. Applying these formulae leads to time dilation,

length ontration, and so forth.

An extremely useful tool is the spaetime diagram, so let's onsider Minkowski spae

from this point of view. We an begin by portraying the initial t and x axes at (what are

onventionally thought of as) right angles, and suppressing the y and z axes. Then aording

to (1.19), under a boost in the x-t plane the x

0

axis (t

0

= 0) is given by t = x tanh �, while

the t

0

axis (x

0

= 0) is given by t = x= tanh �. We therefore see that the spae and time axes

are rotated into eah other, although they sissor together instead of remaining orthogonal

in the traditional Eulidean sense. (As we shall see, the axes do in fat remain orthogonal

in the Lorentzian sense.) This should ome as no surprise, sine if spaetime behaved just

like a four-dimensional version of spae the world would be a very di�erent plae.

It is also enlightening to onsider the paths orresponding to travel at the speed  = 1.

These are given in the original oordinate system by x = �t. In the new system, a moment's

thought reveals that the paths de�ned by x

0

= �t

0

are preisely the same as those de�ned

by x = �t; these trajetories are left invariant under Lorentz transformations. Of ourse

we know that light travels at this speed; we have therefore found that the speed of light is

the same in any inertial frame. A set of points whih are all onneted to a single event by
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x’

x

t
t’

 x = -t
x’ = -t’

 x = t
x’ = t’

straight lines moving at the speed of light is alled a light one; this entire set is invariant

under Lorentz transformations. Light ones are naturally divided into future and past; the

set of all points inside the future and past light ones of a point p are alled timelike

separated from p, while those outside the light ones are spaelike separated and those

on the ones are lightlike or null separated from p. Referring bak to (1.3), we see that the

interval between timelike separated points is negative, between spaelike separated points is

positive, and between null separated points is zero. (The interval is de�ned to be s

2

, not the

square root of this quantity.) Notie the distintion between this situation and that in the

Newtonian world; here, it is impossible to say (in a oordinate-independent way) whether a

point that is spaelike separated from p is in the future of p, the past of p, or \at the same

time".

To probe the struture of Minkowski spae in more detail, it is neessary to introdue

the onepts of vetors and tensors. We will start with vetors, whih should be familiar. Of

ourse, in spaetime vetors are four-dimensional, and are often referred to as four-vetors.

This turns out to make quite a bit of di�erene; for example, there is no suh thing as a

ross produt between two four-vetors.

Beyond the simple fat of dimensionality, the most important thing to emphasize is that

eah vetor is loated at a given point in spaetime. You may be used to thinking of vetors

as strething from one point to another in spae, and even of \free" vetors whih you an

slide arelessly from point to point. These are not useful onepts in relativity. Rather, to

eah point p in spaetime we assoiate the set of all possible vetors loated at that point;

this set is known as the tangent spae at p, or T

p

. The name is inspired by thinking of the

set of vetors attahed to a point on a simple urved two-dimensional spae as omprising a
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plane whih is tangent to the point. But inspiration aside, it is important to think of these

vetors as being loated at a single point, rather than strething from one point to another.

(Although this won't stop us from drawing them as arrows on spaetime diagrams.)

p

manifold 

    M

Tp

Later we will relate the tangent spae at eah point to things we an onstrut from the

spaetime itself. For right now, just think of T

p

as an abstrat vetor spae for eah point

in spaetime. A (real) vetor spae is a olletion of objets (\vetors") whih, roughly

speaking, an be added together and multiplied by real numbers in a linear way. Thus, for

any two vetors V and W and real numbers a and b, we have

(a+ b)(V +W ) = aV + bV + aW + bW : (1.22)

Every vetor spae has an origin, i.e. a zero vetor whih funtions as an identity element

under vetor addition. In many vetor spaes there are additional operations suh as taking

an inner (dot) produt, but this is extra struture over and above the elementary onept of

a vetor spae.

A vetor is a perfetly well-de�ned geometri objet, as is a vetor �eld, de�ned as a

set of vetors with exatly one at eah point in spaetime. (The set of all the tangent spaes

of a manifold M is alled the tangent bundle, T (M).) Nevertheless it is often useful for

onrete purposes to deompose vetors into omponents with respet to some set of basis

vetors. A basis is any set of vetors whih both spans the vetor spae (any vetor is

a linear ombination of basis vetors) and is linearly independent (no vetor in the basis

is a linear ombination of other basis vetors). For any given vetor spae, there will be

an in�nite number of legitimate bases, but eah basis will onsist of the same number of
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vetors, known as the dimension of the spae. (For a tangent spae assoiated with a point

in Minkowski spae, the dimension is of ourse four.)

Let us imagine that at eah tangent spae we set up a basis of four vetors ê

(�)

, with

� 2 f0; 1; 2; 3g as usual. In fat let us say that eah basis is adapted to the oordinates x

�

;

that is, the basis vetor ê

(1)

is what we would normally think of pointing along the x-axis,

et. It is by no means neessary that we hoose a basis whih is adapted to any oordinate

system at all, although it is often onvenient. (We really ould be more preise here, but

later on we will repeat the disussion at an exruiating level of preision, so some sloppiness

now is forgivable.) Then any abstrat vetor A an be written as a linear ombination of

basis vetors:

A = A

�

ê

(�)

: (1.23)

The oeÆients A

�

are the omponents of the vetor A. More often than not we will forget

the basis entirely and refer somewhat loosely to \the vetor A

�

", but keep in mind that

this is shorthand. The real vetor is an abstrat geometrial entity, while the omponents

are just the oeÆients of the basis vetors in some onvenient basis. (Sine we will usually

suppress the expliit basis vetors, the indies will usually label omponents of vetors and

tensors. This is why there are parentheses around the indies on the basis vetors, to remind

us that this is a olletion of vetors, not omponents of a single vetor.)

A standard example of a vetor in spaetime is the tangent vetor to a urve. A param-

eterized urve or path through spaetime is spei�ed by the oordinates as a funtion of the

parameter, e.g. x

�

(�). The tangent vetor V (�) has omponents

V

�

=

dx

�

d�

: (1.24)

The entire vetor is thus V = V

�

ê

(�)

. Under a Lorentz transformation the oordinates

x

�

hange aording to (1.11), while the parameterization � is unaltered; we an therefore

dedue that the omponents of the tangent vetor must hange as

V

�

! V

�

0

= �

�

0

�

V

�

: (1.25)

However, the vetor itself (as opposed to its omponents in some oordinate system) is

invariant under Lorentz transformations. We an use this fat to derive the transformation

properties of the basis vetors. Let us refer to the set of basis vetors in the transformed

oordinate system as ê

(�

0

)

. Sine the vetor is invariant, we have

V = V

�

ê

(�)

= V

�

0

ê

(�

0

)

= �

�

0

�

V

�

ê

(�

0

)

: (1.26)

But this relation must hold no matter what the numerial values of the omponents V

�

are.

Therefore we an say

ê

(�)

= �

�

0

�

ê

(�

0

)

: (1.27)
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To get the new basis ê

(�

0

)

in terms of the old one ê

(�)

we should multiply by the inverse

of the Lorentz transformation �

�

0

�

. But the inverse of a Lorentz transformation from the

unprimed to the primed oordinates is also a Lorentz transformation, this time from the

primed to the unprimed systems. We will therefore introdue a somewhat subtle notation,

by writing using the same symbol for both matries, just with primed and unprimed indies

adjusted. That is,

(�

�1

)

�

0

�

= �

�

0

�

; (1.28)

or

�

�

0

�

�

�

0

�

= Æ

�

0

�

0

; �

�

0

�

�

�

0

�

= Æ

�

�

; (1.29)

where Æ

�

�

is the traditional Kroneker delta symbol in four dimensions. (Note that Shutz uses

a di�erent onvention, always arranging the two indies northwest/southeast; the important

thing is where the primes go.) From (1.27) we then obtain the transformation rule for basis

vetors:

ê

(�

0

)

= �

�

0

�

ê

(�)

: (1.30)

Therefore the set of basis vetors transforms via the inverse Lorentz transformation of the

oordinates or vetor omponents.

It is worth pausing a moment to take all this in. We introdued oordinates labeled by

upper indies, whih transformed in a ertain way under Lorentz transformations. We then

onsidered vetor omponents whih also were written with upper indies, whih made sense

sine they transformed in the same way as the oordinate funtions. (In a �xed oordinate

system, eah of the four oordinates x

�

an be thought of as a funtion on spaetime, as

an eah of the four omponents of a vetor �eld.) The basis vetors assoiated with the

oordinate system transformed via the inverse matrix, and were labeled by a lower index.

This notation ensured that the invariant objet onstruted by summing over the omponents

and basis vetors was left unhanged by the transformation, just as we would wish. It's

probably not giving too muh away to say that this will ontinue to be the ase for more

ompliated objets with multiple indies (tensors).

One we have set up a vetor spae, there is an assoiated vetor spae (of equal dimen-

sion) whih we an immediately de�ne, known as the dual vetor spae. The dual spae

is usually denoted by an asterisk, so that the dual spae to the tangent spae T

p

is alled

the otangent spae and denoted T

�

p

. The dual spae is the spae of all linear maps from

the original vetor spae to the real numbers; in math lingo, if ! 2 T

�

p

is a dual vetor, then

it ats as a map suh that:

!(aV + bW ) = a!(V ) + b!(W ) 2 R ; (1.31)

where V , W are vetors and a, b are real numbers. The nie thing about these maps is that

they form a vetor spae themselves; thus, if ! and � are dual vetors, we have

(a! + b�)(V ) = a!(V ) + b�(V ) : (1.32)
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To make this onstrution somewhat more onrete, we an introdue a set of basis dual

vetors

^

�

(�)

by demanding

^

�

(�)

(ê

(�)

) = Æ

�

�

: (1.33)

Then every dual vetor an be written in terms of its omponents, whih we label with lower

indies:

! = !

�

^

�

(�)

: (1.34)

In perfet analogy with vetors, we will usually simply write !

�

to stand for the entire dual

vetor. In fat, you will sometime see elements of T

p

(what we have alled vetors) referred to

as ontravariant vetors, and elements of T

�

p

(what we have alled dual vetors) referred

to as ovariant vetors. Atually, if you just refer to ordinary vetors as vetors with upper

indies and dual vetors as vetors with lower indies, nobody should be o�ended. Another

name for dual vetors is one-forms, a somewhat mysterious designation whih will beome

learer soon.

The omponent notation leads to a simple way of writing the ation of a dual vetor on

a vetor:

!(V ) = !

�

V

�

^

�

(�)

(ê

(�)

)

= !

�

V

�

Æ

�

�

= !

�

V

�

2 R : (1.35)

This is why it is rarely neessary to write the basis vetors (and dual vetors) expliitly; the

omponents do all of the work. The form of (1.35) also suggests that we an think of vetors

as linear maps on dual vetors, by de�ning

V (!) � !(V ) = !

�

V

�

: (1.36)

Therefore, the dual spae to the dual vetor spae is the original vetor spae itself.

Of ourse in spaetime we will be interested not in a single vetor spae, but in �elds of

vetors and dual vetors. (The set of all otangent spaes overM is the otangent bundle,

T

�

(M).) In that ase the ation of a dual vetor �eld on a vetor �eld is not a single number,

but a salar (or just \funtion") on spaetime. A salar is a quantity without indies, whih

is unhanged under Lorentz transformations.

We an use the same arguments that we earlier used for vetors to derive the transfor-

mation properties of dual vetors. The answers are, for the omponents,

!

�

0

= �

�

0

�

!

�

; (1.37)

and for basis dual vetors,

^

�

(�

0

)

= �

�

0

�

^

�

(�)

: (1.38)
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This is just what we would expet from index plaement; the omponents of a dual vetor

transform under the inverse transformation of those of a vetor. Note that this ensures that

the salar (1.35) is invariant under Lorentz transformations, just as it should be.

Let's onsider some examples of dual vetors, �rst in other ontexts and then inMinkowski

spae. Imagine the spae of n-omponent olumn vetors, for some integer n. Then the dual

spae is that of n-omponent row vetors, and the ation is ordinary matrix multipliation:

V =

0

B

B

B

B

B

B

B

B

�

V

1

V

2

�

�

�

V

n

1

C

C

C

C

C

C

C

C

A

; ! = (!

1

!

2

� � � !

n

) ;

!(V ) = (!

1

!

2

� � � !

n

)

0

B

B

B

B

B

B

B

B

�

V

1

V

2

�

�

�

V

n

1

C

C

C

C

C

C

C

C

A

= !

i

V

i

: (1.39)

Another familiar example ours in quantum mehanis, where vetors in the Hilbert spae

are represented by kets, j i. In this ase the dual spae is the spae of bras, h�j, and the

ation gives the number h�j i. (This is a omplex number in quantum mehanis, but the

idea is preisely the same.)

In spaetime the simplest example of a dual vetor is the gradient of a salar funtion,

the set of partial derivatives with respet to the spaetime oordinates, whih we denote by

\d":

d� =

��

�x

�

^

�

(�)

: (1.40)

The onventional hain rule used to transform partial derivatives amounts in this ase to the

transformation rule of omponents of dual vetors:

��

�x

�

0

=

�x

�

�x

�

0

��

�x

�

= �

�

0

�

��

�x

�

; (1.41)

where we have used (1.11) and (1.28) to relate the Lorentz transformation to the oordinates.

The fat that the gradient is a dual vetor leads to the following shorthand notations for

partial derivatives:

��

�x

�

= �

�

� = �;

�

: (1.42)
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(Very roughly speaking, \x

�

has an upper index, but when it is in the denominator of a

derivative it implies a lower index on the resulting objet.") I'm not a big fan of the omma

notation, but we will use �

�

all the time. Note that the gradient does in fat at in a natural

way on the example we gave above of a vetor, the tangent vetor to a urve. The result is

ordinary derivative of the funtion along the urve:

�

�

�

�x

�

��

=

d�

d�

: (1.43)

As a �nal note on dual vetors, there is a way to represent them as pitures whih is

onsistent with the piture of vetors as arrows. See the disussion in Shutz, or in MTW

(where it is taken to dizzying extremes).

A straightforward generalization of vetors and dual vetors is the notion of a tensor.

Just as a dual vetor is a linear map from vetors to R, a tensor T of type (or rank) (k; l)

is a multilinear map from a olletion of dual vetors and vetors to R:

T : T

�

p

� � � � � T

�

p

� T

p

� � � � � T

p

! R

(k times) (l times) (1.44)

Here, \�" denotes the Cartesian produt, so that for example T

p

�T

p

is the spae of ordered

pairs of vetors. Multilinearity means that the tensor ats linearly in eah of its arguments;

for instane, for a tensor of type (1; 1), we have

T (a! + b�; V + dW ) = aT (!; V ) + adT (!;W ) + bT (�; V ) + bdT (�;W ) : (1.45)

From this point of view, a salar is a type (0; 0) tensor, a vetor is a type (1; 0) tensor, and

a dual vetor is a type (0; 1) tensor.

The spae of all tensors of a �xed type (k; l) forms a vetor spae; they an be added

together and multiplied by real numbers. To onstrut a basis for this spae, we need to

de�ne a new operation known as the tensor produt, denoted by 
. If T is a (k; l) tensor

and S is a (m;n) tensor, we de�ne a (k +m; l+ n) tensor T 
 S by

T 
 S(!

(1)

; : : : ; !

(k)

; : : : ; !

(k+m)

; V

(1)

; : : : ; V

(l)

; : : : ; V

(l+n)

)

= T (!

(1)

; : : : ; !

(k)

; V

(1)

; : : : ; V

(l)

)S(!

(k+1)

; : : : ; !

(k+m)

; V

(l+1)

; : : : ; V

(l+n)

) : (1.46)

(Note that the !

(i)

and V

(i)

are distint dual vetors and vetors, not omponents thereof.)

In other words, �rst at T on the appropriate set of dual vetors and vetors, and then at

S on the remainder, and then multiply the answers. Note that, in general, T 
 S 6= S 
 T .

It is now straightforward to onstrut a basis for the spae of all (k; l) tensors, by taking

tensor produts of basis vetors and dual vetors; this basis will onsist of all tensors of the

form

ê

(�

1

)


 � � � 
 ê

(�

k

)




^

�

(�

1

)


 � � � 


^

�

(�

l

)

: (1.47)
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In a 4-dimensional spaetime there will be 4

k+l

basis tensors in all. In omponent notation

we then write our arbitrary tensor as

T = T

�

1

����

k

�

1

����

l

ê

(�

1

)


 � � � 
 ê

(�

k

)




^

�

(�

1

)


 � � � 


^

�

(�

l

)

: (1.48)

Alternatively, we ould de�ne the omponents by ating the tensor on basis vetors and dual

vetors:

T

�

1

����

k

�

1

����

l

= T (

^

�

(�

1

)

; : : : ;

^

�

(�

k

)

; ê

(�

1

)

; : : : ; ê

(�

l

)

) : (1.49)

You an hek for yourself, using (1.33) and so forth, that these equations all hang together

properly.

As with vetors, we will usually take the shortut of denoting the tensor T by its om-

ponents T

�

1

����

k

�

1

����

l

. The ation of the tensors on a set of vetors and dual vetors follows

the pattern established in (1.35):

T (!

(1)

; : : : ; !

(k)

; V

(1)

; : : : ; V

(l)

) = T

�

1

����

k

�

1

����

l

!

(1)

�

1

� � �!

(k)

�

k

V

(1)�

1

� � �V

(l)�

l

: (1.50)

The order of the indies is obviously important, sine the tensor need not at in the same way

on its various arguments. Finally, the transformation of tensor omponents under Lorentz

transformations an be derived by applying what we already know about the transformation

of basis vetors and dual vetors. The answer is just what you would expet from index

plaement,

T

�

0

1

����

0

k

�

0

1

����

0

l

= �

�

0

1

�

1

� � ��

�

0

k

�

k

�

�

0

1

�

1

� � ��

�

0

l

�

l

T

�

1

����

k

�

1

����

l

: (1.51)

Thus, eah upper index gets transformed like a vetor, and eah lower index gets transformed

like a dual vetor.

Although we have de�ned tensors as linear maps from sets of vetors and tangent vetors

to R, there is nothing that fores us to at on a full olletion of arguments. Thus, a (1; 1)

tensor also ats as a map from vetors to vetors:

T

�

�

: V

�

! T

�

�

V

�

: (1.52)

You an hek for yourself that T

�

�

V

�

is a vetor (i.e. obeys the vetor transformation law).

Similarly, we an at one tensor on (all or part of) another tensor to obtain a third tensor.

For example,

U

�

�

= T

��

�

S

�

��

(1.53)

is a perfetly good (1; 1) tensor.

You may be onerned that this introdution to tensors has been somewhat too brief,

given the esoteri nature of the material. In fat, the notion of tensors does not require a

great deal of e�ort to master; it's just a matter of keeping the indies straight, and the rules

for manipulating them are very natural. Indeed, a number of books like to de�ne tensors as
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olletions of numbers transforming aording to (1.51). While this is operationally useful, it

tends to obsure the deeper meaning of tensors as geometrial entities with a life independent

of any hosen oordinate system. There is, however, one subtlety whih we have glossed over.

The notions of dual vetors and tensors and bases and linear maps belong to the realm of

linear algebra, and are appropriate whenever we have an abstrat vetor spae at hand. In

the ase of interest to us we have not just a vetor spae, but a vetor spae at eah point in

spaetime. More often than not we are interested in tensor �elds, whih an be thought of

as tensor-valued funtions on spaetime. Fortunately, none of the manipulations we de�ned

above really are whether we are dealing with a single vetor spae or a olletion of vetor

spaes, one for eah event. We will be able to get away with simply alling things funtions

of x

�

when appropriate. However, you should keep straight the logial independene of the

notions we have introdued and their spei� appliation to spaetime and relativity.

Now let's turn to some examples of tensors. First we onsider the previous example of

olumn vetors and their duals, row vetors. In this system a (1; 1) tensor is simply a matrix,

M

i

j

. Its ation on a pair (!; V ) is given by usual matrix multipliation:

M(!; V ) = (!

1

!

2

� � � !

n

)

0

B

B

B

B

B

B

B

B

�

M

1

1

M

1

2

� � � M

1

n

M

2

1

M

2

2

� � � M

2

n

� � � � � �

� � � � � �

� � � � � �

M

n

1

M

n

2

� � � M

n

n

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

�

V

1

V

2

�

�

�

V

n

1

C

C

C

C

C

C

C

C

A

= !

i

M

i

j

V

j

: (1.54)

If you like, feel free to think of tensors as \matries with an arbitrary number of indies."

In spaetime, we have already seen some examples of tensors without alling them that.

The most familiar example of a (0; 2) tensor is the metri, �

��

. The ation of the metri on

two vetors is so useful that it gets its own name, the inner produt (or dot produt):

�(V;W ) = �

��

V

�

W

�

= V �W : (1.55)

Just as with the onventional Eulidean dot produt, we will refer to two vetors whose dot

produt vanishes as orthogonal. Sine the dot produt is a salar, it is left invariant under

Lorentz transformations; therefore the basis vetors of any Cartesian inertial frame, whih

are hosen to be orthogonal by de�nition, are still orthogonal after a Lorentz transformation

(despite the \sissoring together" we notied earlier). The norm of a vetor is de�ned to be

inner produt of the vetor with itself; unlike in Eulidean spae, this number is not positive

de�nite:

if �

��

V

�

V

�

is

8

>

<

>

:

< 0 ; V

�

is timelike

= 0 ; V

�

is lightlike or null

> 0 ; V

�

is spaelike :
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(A vetor an have zero norm without being the zero vetor.) You will notie that the

terminology is the same as that whih we earlier used to lassify the relationship between

two points in spaetime; it's no aident, of ourse, and we will go into more detail later.

Another tensor is the Kroneker delta Æ

�

�

, of type (1; 1), whih you already know the

omponents of. Related to this and the metri is the inverse metri �

��

, a type (2; 0)

tensor de�ned as the inverse of the metri:

�

��

�

��

= �

��

�

��

= Æ

�

�

: (1.56)

In fat, as you an hek, the inverse metri has exatly the same omponents as the metri

itself. (This is only true in at spae in Cartesian oordinates, and will fail to hold in more

general situations.) There is also the Levi-Civita tensor, a (0; 4) tensor:

�

����

=

8

>

<

>

:

+1 if ���� is an even permutation of 0123

�1 if ���� is an odd permutation of 0123

0 otherwise :

(1.57)

Here, a \permutation of 0123" is an ordering of the numbers 0, 1, 2, 3 whih an be obtained

by starting with 0123 and exhanging two of the digits; an even permutation is obtained by

an even number of suh exhanges, and an odd permutation is obtained by an odd number.

Thus, for example, �

0321

= �1.

It is a remarkable property of the above tensors { the metri, the inverse metri, the

Kroneker delta, and the Levi-Civita tensor { that, even though they all transform aording

to the tensor transformation law (1.51), their omponents remain unhanged in any Cartesian

oordinate system in at spaetime. In some sense this makes them bad examples of tensors,

sine most tensors do not have this property. In fat, even these tensors do not have this

property one we go to more general oordinate systems, with the single exeption of the

Kroneker delta. This tensor has exatly the same omponents in any oordinate system

in any spaetime. This makes sense from the de�nition of a tensor as a linear map; the

Kroneker tensor an be thought of as the identity map from vetors to vetors (or from

dual vetors to dual vetors), whih learly must have the same omponents regardless of

oordinate system. The other tensors (the metri, its inverse, and the Levi-Civita tensor)

haraterize the struture of spaetime, and all depend on the metri. We shall therefore

have to treat them more arefully when we drop our assumption of at spaetime.

A more typial example of a tensor is the eletromagneti �eld strength tensor. We

all know that the eletromagneti �elds are made up of the eletri �eld vetor E

i

and the

magneti �eld vetor B

i

. (Remember that we use Latin indies for spaelike omponents

1,2,3.) Atually these are only \vetors" under rotations in spae, not under the full Lorentz
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group. In fat they are omponents of a (0; 2) tensor F

��

, de�ned by

F

��

=

0

B

B

B

�

0 �E

1

�E

2

�E

3

E

1

0 B

3

�B

2

E

2

�B

3

0 B

1

E

3

B

2

�B

1

0

1

C

C

C

A

= �F

��

: (1.58)

From this point of view it is easy to transform the eletromagneti �elds in one referene

frame to those in another, by appliation of (1.51). The unifying power of the tensor formal-

ism is evident: rather than a olletion of two vetors whose relationship and transformation

properties are rather mysterious, we have a single tensor �eld to desribe all of eletromag-

netism. (On the other hand, don't get arried away; sometimes it's more onvenient to work

in a single oordinate system using the eletri and magneti �eld vetors.)

With some examples in hand we an now be a little more systemati about some prop-

erties of tensors. First onsider the operation of ontration, whih turns a (k; l) tensor

into a (k� 1; l� 1) tensor. Contration proeeds by summing over one upper and one lower

index:

S

��

�

= T

���

��

: (1.59)

You an hek that the result is a well-de�ned tensor. Of ourse it is only permissible to

ontrat an upper index with a lower index (as opposed to two indies of the same type).

Note also that the order of the indies matters, so that you an get di�erent tensors by

ontrating in di�erent ways; thus,

T

���

��

6= T

���

��

(1.60)

in general.

The metri and inverse metri an be used to raise and lower indies on tensors. That

is, given a tensor T

��

Æ

, we an use the metri to de�ne new tensors whih we hoose to

denote by the same letter T :

T

���

Æ

= �

�

T

��

Æ

;

T

�

�

Æ

= �

��

T

��

Æ

;

T

��

��

= �

��

�

��

�

�

�

�Æ

T

��

Æ

; (1.61)

and so forth. Notie that raising and lowering does not hange the position of an index

relative to other indies, and also that \free" indies (whih are not summed over) must be

the same on both sides of an equation, while \dummy" indies (whih are summed over)

only appear on one side. As an example, we an turn vetors and dual vetors into eah

other by raising and lowering indies:

V

�

= �

��

V

�

!

�

= �

��

!

�

: (1.62)
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This explains why the gradient in three-dimensional at Eulidean spae is usually thought

of as an ordinary vetor, even though we have seen that it arises as a dual vetor; in Eulidean

spae (where the metri is diagonal with all entries +1) a dual vetor is turned into a vetor

with preisely the same omponents when we raise its index. You may then wonder why we

have belabored the distintion at all. One simple reason, of ourse, is that in a Lorentzian

spaetime the omponents are not equal:

!

�

= (�!

0

; !

1

; !

2

; !

3

) : (1.63)

In a urved spaetime, where the form of the metri is generally more ompliated, the dif-

ferene is rather more dramati. But there is a deeper reason, namely that tensors generally

have a \natural" de�nition whih is independent of the metri. Even though we will always

have a metri available, it is helpful to be aware of the logial status of eah mathematial

objet we introdue. The gradient, and its ation on vetors, is perfetly well de�ned re-

gardless of any metri, whereas the \gradient with upper indies" is not. (As an example,

we will eventually want to take variations of funtionals with respet to the metri, and will

therefore have to know exatly how the funtional depends on the metri, something that is

easily obsured by the index notation.)

Continuing our ompilation of tensor jargon, we refer to a tensor as symmetri in any

of its indies if it is unhanged under exhange of those indies. Thus, if

S

���

= S

���

; (1.64)

we say that S

���

is symmetri in its �rst two indies, while if

S

���

= S

���

= S

���

= S

���

= S

���

= S

���

; (1.65)

we say that S

���

is symmetri in all three of its indies. Similarly, a tensor is antisym-

metri (or \skew-symmetri") in any of its indies if it hanges sign when those indies are

exhanged; thus,

A

���

= �A

���

(1.66)

means that A

���

is antisymmetri in its �rst and third indies (or just \antisymmetri in �

and �"). If a tensor is (anti-) symmetri in all of its indies, we refer to it as simply (anti-)

symmetri (sometimes with the redundant modi�er \ompletely"). As examples, the metri

�

��

and the inverse metri �

��

are symmetri, while the Levi-Civita tensor �

����

and the

eletromagneti �eld strength tensor F

��

are antisymmetri. (Chek for yourself that if you

raise or lower a set of indies whih are symmetri or antisymmetri, they remain that way.)

Notie that it makes no sense to exhange upper and lower indies with eah other, so don't

suumb to the temptation to think of the Kroneker delta Æ

�

�

as symmetri. On the other

hand, the fat that lowering an index on Æ

�

�

gives a symmetri tensor (in fat, the metri)
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means that the order of indies doesn't really matter, whih is why we don't keep trak index

plaement for this one tensor.

Given any tensor, we an symmetrize (or antisymmetrize) any number of its upper or

lower indies. To symmetrize, we take the sum of all permutations of the relevant indies

and divide by the number of terms:

T

(�

1

�

2

����

n

)�

�

=

1

n!

(T

�

1

�

2

����

n

�

�

+ sum over permutations of indies �

1

� � � �

n

) ; (1.67)

while antisymmetrization omes from the alternating sum:

T

[�

1

�

2

����

n

℄�

�

=

1

n!

(T

�

1

�

2

����

n

�

�

+ alternating sum over permutations of indies �

1

� � ��

n

) :

(1.68)

By \alternating sum" we mean that permutations whih are the result of an odd number of

exhanges are given a minus sign, thus:

T

[���℄�

=

1

6

(T

����

� T

����

+ T

����

� T

����

+ T

����

� T

����

) : (1.69)

Notie that round/square brakets denote symmetrization/antisymmetrization. Further-

more, we may sometimes want to (anti-) symmetrize indies whih are not next to eah

other, in whih ase we use vertial bars to denote indies not inluded in the sum:

T

(�j�j�)

=

1

2

(T

���

+ T

���

) : (1.70)

Finally, some people use a onvention in whih the fator of 1=n! is omitted. The one used

here is a good one, sine (for example) a symmetri tensor satis�es

S

�

1

����

n

= S

(�

1

����

n

)

; (1.71)

and likewise for antisymmetri tensors.

We have been very areful so far to distinguish learly between things that are always

true (on a manifold with arbitrary metri) and things whih are only true in Minkowski

spae in Cartesian oordinates. One of the most important distintions arises with partial

derivatives. If we are working in at spaetime with Cartesian oordinates, then the partial

derivative of a (k; l) tensor is a (k; l+ 1) tensor; that is,

T

�

�

�

= �

�

R

�

�

(1.72)

transforms properly under Lorentz transformations. However, this will no longer be true

in more general spaetimes, and we will have to de�ne a \ovariant derivative" to take the

plae of the partial derivative. Nevertheless, we an still use the fat that partial derivatives
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give us tensor in this speial ase, as long as we keep our wits about us. (The one exeption

to this warning is the partial derivative of a salar, �

�

�, whih is a perfetly good tensor

[the gradient℄ in any spaetime.)

We have now aumulated enough tensor know-how to illustrate some of these onepts

using atual physis. Spei�ally, we will examineMaxwell's equations of eletrodynam-

is. In 19

th

-entury notation, these are

r�B� �

t

E = 4�J

r �E = 4��

r�E+ �

t

B = 0

r �B = 0 : (1.73)

Here, E and B are the eletri and magneti �eld 3-vetors, J is the urrent, � is the

harge density, and r� and r� are the onventional url and divergene. These equations

are invariant under Lorentz transformations, of ourse; that's how the whole business got

started. But they don't look obviously invariant; our tensor notation an �x that. Let's

begin by writing these equations in just a slightly di�erent notation,

�

ijk

�

j

B

k

� �

0

E

i

= 4�J

i

�

i

E

i

= 4�J

0

�

ijk

�

j

E

k

+ �

0

B

i

= 0

�

i

B

i

= 0 : (1.74)

In these expressions, spatial indies have been raised and lowered with abandon, without

any attempt to keep straight where the metri appears. This is beause Æ

ij

is the metri on

at 3-spae, with Æ

ij

its inverse (they are equal as matries). We an therefore raise and

lower indies at will, sine the omponents don't hange. Meanwhile, the three-dimensional

Levi-Civita tensor �

ijk

is de�ned just as the four-dimensional one, although with one fewer

index. We have replaed the harge density by J

0

; this is legitimate beause the density and

urrent together form the urrent 4-vetor, J

�

= (�; J

1

; J

2

; J

3

).

From these expressions, and the de�nition (1.58) of the �eld strength tensor F

��

, it is

easy to get a ompletely tensorial 20

th

-entury version of Maxwell's equations. Begin by

noting that we an express the �eld strength with upper indies as

F

0i

= E

i

F

ij

= �

ijk

B

k

: (1.75)

(To hek this, note for example that F

01

= �

00

�

11

F

01

and F

12

= �

123

B

3

.) Then the �rst two

equations in (1.74) beome

�

j

F

ij

� �

0

F

0i

= 4�J

i
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�

i

F

0i

= 4�J

0

: (1.76)

Using the antisymmetry of F

��

, we see that these may be ombined into the single tensor

equation

�

�

F

��

= 4�J

�

: (1.77)

A similar line of reasoning, whih is left as an exerise to you, reveals that the third and

fourth equations in (1.74) an be written

�

[�

F

��℄

= 0 : (1.78)

The four traditional Maxwell equations are thus replaed by two, thus demonstrating the

eonomy of tensor notation. More importantly, however, both sides of equations (1.77) and

(1.78) manifestly transform as tensors; therefore, if they are true in one inertial frame, they

must be true in any Lorentz-transformed frame. This is why tensors are so useful in relativity

| we often want to express relationships without reourse to any referene frame, and it is

neessary that the quantities on eah side of an equation transform in the same way under

hange of oordinates. As a matter of jargon, we will sometimes refer to quantities whih

are written in terms of tensors as ovariant (whih has nothing to do with \ovariant"

as opposed to \ontravariant"). Thus, we say that (1.77) and (1.78) together serve as the

ovariant form of Maxwell's equations, while (1.73) or (1.74) are non-ovariant.

Let us now introdue a speial lass of tensors, known as di�erential forms (or just

\forms"). A di�erential p-form is a (0; p) tensor whih is ompletely antisymmetri. Thus,

salars are automatially 0-forms, and dual vetors are automatially one-forms (thus ex-

plaining this terminology from a while bak). We also have the 2-form F

��

and the 4-form

�

����

. The spae of all p-forms is denoted �

p

, and the spae of all p-form �elds over a mani-

fold M is denoted �

p

(M). A semi-straightforward exerise in ombinatoris reveals that the

number of linearly independent p-forms on an n-dimensional vetor spae is n!=(p!(n� p)!).

So at a point on a 4-dimensional spaetime there is one linearly independent 0-form, four

1-forms, six 2-forms, four 3-forms, and one 4-form. There are no p-forms for p > n, sine all

of the omponents will automatially be zero by antisymmetry.

Why should we are about di�erential forms? This is a hard question to answer without

some more work, but the basi idea is that forms an be both di�erentiated and integrated,

without the help of any additional geometri struture. We will delay integration theory

until later, but see how to di�erentiate forms shortly.

Given a p-form A and a q-form B, we an form a (p + q)-form known as the wedge

produt A ^ B by taking the antisymmetrized tensor produt:

(A ^B)

�

1

����

p+q

=

(p+ q)!

p! q!

A

[�

1

����

p

B

�

p+1

����

p+q

℄

: (1.79)
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Thus, for example, the wedge produt of two 1-forms is

(A ^B)

��

= 2A

[�

B

�℄

= A

�

B

�

�A

�

B

�

: (1.80)

Note that

A ^ B = (�1)

pq

B ^ A ; (1.81)

so you an alter the order of a wedge produt if you are areful with signs.

The exterior derivative \d" allows us to di�erentiate p-form �elds to obtain (p+1)-form

�elds. It is de�ned as an appropriately normalized antisymmetri partial derivative:

(dA)

�

1

����

p+1

= (p + 1)�

[�

1

A

�

2

����

p+1

℄

: (1.82)

The simplest example is the gradient, whih is the exterior derivative of a 1-form:

(d�)

�

= �

�

� : (1.83)

The reason why the exterior derivative deserves speial attention is that it is a tensor, even in

urved spaetimes, unlike its ousin the partial derivative. Sine we haven't studied urved

spaes yet, we annot prove this, but (1.82) de�nes an honest tensor no matter what the

metri and oordinates are.

Another interesting fat about exterior di�erentiation is that, for any form A,

d(dA) = 0 ; (1.84)

whih is often written d

2

= 0. This identity is a onsequene of the de�nition of d and the

fat that partial derivatives ommute, �

�

�

�

= �

�

�

�

(ating on anything). This leads us to

the following mathematial aside, just for fun. We de�ne a p-form A to be losed if dA = 0,

and exat if A = dB for some (p�1)-form B. Obviously, all exat forms are losed, but the

onverse is not neessarily true. On a manifold M , losed p-forms omprise a vetor spae

Z

p

(M), and exat forms omprise a vetor spae B

p

(M). De�ne a new vetor spae as the

losed forms modulo the exat forms:

H

p

(M) =

Z

p

(M)

B

p

(M)

: (1.85)

This is known as the pth de Rham ohomology vetor spae, and depends only on the

topology of the manifold M . (Minkowski spae is topologially equivalent to R

4

, whih is

uninteresting, so that all of the H

p

(M) vanish for p > 0; for p = 0 we have H

0

(M) = R.

Therefore in Minkowski spae all losed forms are exat exept for zero-forms; zero-forms

an't be exat sine there are no �1-forms for them to be the exterior derivative of.) It is

striking that information about the topology an be extrated in this way, whih essentially

involves the solutions to di�erential equations. The dimension b

p

of the spae H

p

(M) is
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alled the pth Betti number of M , and the Euler harateristi is given by the alternating

sum

�(M) =

n

X

p=0

(�1)

p

b

p

: (1.86)

Cohomology theory is the basis for muh of modern di�erential topology.

Moving bak to reality, the �nal operation on di�erential forms we will introdue is

Hodge duality. We de�ne the \Hodge star operator" on an n-dimensional manifold as a

map from p-forms to (n� p)-forms,

(�A)

�

1

����

n�p

=

1

p!

�

�

1

����

p

�

1

����

n�p

A

�

1

����

p

; (1.87)

mapping A to \A dual". Unlike our other operations on forms, the Hodge dual does depend

on the metri of the manifold (whih should be obvious, sine we had to raise some indies

on the Levi-Civita tensor in order to de�ne (1.87)). Applying the Hodge star twie returns

either plus or minus the original form:

� �A = (�1)

s+p(n�p)

A ; (1.88)

where s is the number of minus signs in the eigenvalues of the metri (for Minkowski spae,

s = 1).

Two fats on the Hodge dual: First, \duality" in the sense of Hodge is di�erent than the

relationship between vetors and dual vetors, although both an be thought of as the spae

of linear maps from the original spae to R. Notie that the dimensionality of the spae of

(n� p)-forms is equal to that of the spae of p-forms, so this has at least a hane of being

true. In the ase of forms, the linear map de�ned by an (n � p)-form ating on a p-form is

given by the dual of the wedge produt of the two forms. Thus, if A

(n�p)

is an (n� p)-form

and B

(p)

is a p-form at some point in spaetime, we have

� (A

(n�p)

^B

(p)

) 2 R : (1.89)

The seond fat onerns di�erential forms in 3-dimensional Eulidean spae. The Hodge

dual of the wedge produt of two 1-forms gives another 1-form:

� (U ^ V )

i

= �

i

jk

U

j

V

k

: (1.90)

(All of the prefators anel.) Sine 1-forms in Eulidean spae are just like vetors, we have

a map from two vetors to a single vetor. You should onvine yourself that this is just the

onventional ross produt, and that the appearane of the Levi-Civita tensor explains why

the ross produt hanges sign under parity (interhange of two oordinates, or equivalently

basis vetors). This is why the ross produt only exists in three dimensions | beause only
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in three dimensions do we have an interesting map from two dual vetors to a third dual

vetor. If you wanted to you ould de�ne a map from n� 1 one-forms to a single one-form,

but I'm not sure it would be of any use.

Eletrodynamis provides an espeially ompelling example of the use of di�erential

forms. From the de�nition of the exterior derivative, it is lear that equation (1.78) an

be onisely expressed as losure of the two-form F

��

:

dF = 0 : (1.91)

Does this mean that F is also exat? Yes; as we've noted, Minkowski spae is topologially

trivial, so all losed forms are exat. There must therefore be a one-form A

�

suh that

F = dA : (1.92)

This one-form is the familiar vetor potential of eletromagnetism, with the 0 omponent

given by the salar potential, A

0

= �. If one starts from the view that the A

�

is the

fundamental �eld of eletromagnetism, then (1.91) follows as an identity (as opposed to a

dynamial law, an equation of motion). Gauge invariane is expressed by the observation

that the theory is invariant under A ! A + d� for some salar (zero-form) �, and this is

also immediate from the relation (1.92). The other one of Maxwell's equations, (1.77), an

be expressed as an equation between three-forms:

d(�F ) = 4�(�J) ; (1.93)

where the urrent one-form J is just the urrent four-vetor with index lowered. Filling in

the details is left for you to do.

As an intriguing aside, Hodge duality is the basis for one of the hottest topis in theoretial

physis today. It's hard not to notie that the equations (1.91) and (1.93) look very similar.

Indeed, if we set J

�

= 0, the equations are invariant under the \duality transformations"

F ! �F ;

�F ! �F : (1.94)

We therefore say that the vauum Maxwell's equations are duality invariant, while the invari-

ane is spoiled in the presene of harges. We might imagine that magneti as well as eletri

monopoles existed in nature; then we ould add a magneti urrent term 4�(�J

M

) to the

right hand side of (1.91), and the equations would be invariant under duality transformations

plus the additional replaement J $ J

M

. (Of ourse a nonzero right hand side to (1.91) is

inonsistent with F = dA, so this idea only works if A

�

is not a fundamental variable.) Long

ago Dira onsidered the idea of magneti monopoles and showed that a neessary ondition

for their existene is that the fundamental monopole harge be inversely proportional to
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the fundamental eletri harge. Now, the fundamental eletri harge is a small number;

eletrodynamis is \weakly oupled", whih is why perturbation theory is so remarkably

suessful in quantum eletrodynamis (QED). But Dira's ondition on magneti harges

implies that a duality transformation takes a theory of weakly oupled eletri harges to a

theory of strongly oupled magneti monopoles (and vie-versa). Unfortunately monopoles

don't exist (as far as we know), so these ideas aren't diretly appliable to eletromagnetism;

but there are some theories (suh as supersymmetri non-abelian gauge theories) for whih

it has been long onjetured that some sort of duality symmetry may exist. If it did, we

would have the opportunity to analyze a theory whih looked strongly oupled (and therefore

hard to solve) by looking at the weakly oupled dual version. Reently work by Seiberg and

Witten and others has provided very strong evidene that this is exatly what happens in

ertain theories. The hope is that these tehniques will allow us to explore various phenom-

ena whih we know exist in strongly oupled quantum �eld theories, suh as on�nement of

quarks in hadrons.

We've now gone over essentially everything there is to know about the are and feeding of

tensors. In the next setion we will look more arefully at the rigorous de�nitions of manifolds

and tensors, but the basi mehanis have been pretty well overed. Before jumping to more

abstrat mathematis, let's review how physis works in Minkowski spaetime.

Start with the worldline of a single partile. This is spei�ed by a map R ! M , where

M is the manifold representing spaetime; we usually think of the path as a parameterized

urve x

�

(�). As mentioned earlier, the tangent vetor to this path is dx

�

=d� (note that it

depends on the parameterization). An objet of primary interest is the norm of the tangent

vetor, whih serves to haraterize the path; if the tangent vetor is timelike/null/spaelike

at some parameter value �, we say that the path is timelike/null/spaelike at that point. This

explains why the same words are used to lassify vetors in the tangent spae and intervals

between two points | beause a straight line onneting, say, two timelike separated points

will itself be timelike at every point along the path.

Nevertheless, it's important to be aware of the sleight of hand whih is being pulled here.

The metri, as a (0; 2) tensor, is a mahine whih ats on two vetors (or two opies of the

same vetor) to produe a number. It is therefore very natural to lassify tangent vetors

aording to the sign of their norm. But the interval between two points isn't something

quite so natural; it depends on a spei� hoie of path (a \straight line") whih onnets

the points, and this hoie in turn depends on the fat that spaetime is at (whih allows

a unique hoie of straight line between the points). A more natural objet is the line

element, or in�nitesimal interval:

ds

2

= �

��

dx

�

dx

�

: (1.95)

From this de�nition it is tempting to take the square root and integrate along a path to

obtain a �nite interval. But sine ds

2

need not be positive, we de�ne di�erent proedures
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t

x

spacelike

null

timelike

dx
--
d

x  (  )

λ

µ

µ
λ

for di�erent ases. For spaelike paths we de�ne the path length

�s =

Z

s

�

��

dx

�

d�

dx

�

d�

d� ; (1.96)

where the integral is taken over the path. For null paths the interval is zero, so no extra

formula is required. For timelike paths we de�ne the proper time

�� =

Z

s

��

��

dx

�

d�

dx

�

d�

d� ; (1.97)

whih will be positive. Of ourse we may onsider paths that are timelike in some plaes and

spaelike in others, but fortunately it is seldom neessary sine the paths of physial partiles

never hange their harater (massive partiles move on timelike paths, massless partiles

move on null paths). Furthermore, the phrase \proper time" is espeially appropriate, sine

� atually measures the time elapsed on a physial lok arried along the path. This point of

view makes the \twin paradox" and similar puzzles very lear; two worldlines, not neessarily

straight, whih interset at two di�erent events in spaetime will have proper times measured

by the integral (1.97) along the appropriate paths, and these two numbers will in general be

di�erent even if the people travelling along them were born at the same time.

Let's move from the onsideration of paths in general to the paths of massive partiles

(whih will always be timelike). Sine the proper time is measured by a lok travelling on

a timelike worldline, it is onvenient to use � as the parameter along the path. That is, we

use (1.97) to ompute � (�), whih (if � is a good parameter in the �rst plae) we an invert

to obtain �(� ), after whih we an think of the path as x

�

(� ). The tangent vetor in this
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parameterization is known as the four-veloity, U

�

:

U

�

=

dx

�

d�

: (1.98)

Sine d�

2

= ��

��

dx

�

dx

�

, the four-veloity is automatially normalized:

�

��

U

�

U

�

= �1 : (1.99)

(It will always be negative, sine we are only de�ning it for timelike trajetories. You ould

de�ne an analogous vetor for spaelike paths as well; null paths give some extra problems

sine the norm is zero.) In the rest frame of a partile, its four-veloity has omponents

U

�

= (1; 0; 0; 0).

A related vetor is the energy-momentum four-vetor, de�ned by

p

�

= mU

�

; (1.100)

where m is the mass of the partile. The mass is a �xed quantity independent of inertial

frame; what you may be used to thinking of as the \rest mass." It turns out to be muh

more onvenient to take this as the mass one and for all, rather than thinking of mass as

depending on veloity. The energy of a partile is simply p

0

, the timelike omponent of its

energy-momentum vetor. Sine it's only one omponent of a four-vetor, it is not invariant

under Lorentz transformations; that's to be expeted, however, sine the energy of a partile

at rest is not the same as that of the same partile in motion. In the partile's rest frame we

have p

0

= m; realling that we have set  = 1, we �nd that we have found the equation that

made Einstein a elebrity, E = m

2

. (The �eld equations of general relativity are atually

muh more important than this one, but \R

��

�

1

2

Rg

��

= 8�GT

��

" doesn't eliit the viseral

reation that you get from \E = m

2

".) In a moving frame we an �nd the omponents of

p

�

by performing a Lorentz transformation; for a partile moving with (three-) veloity v

along the x axis we have

p

�

= (m; vm; 0; 0) ; (1.101)

where  = 1=

p

1 � v

2

. For small v, this gives p

0

= m +

1

2

mv

2

(what we usually think of

as rest energy plus kineti energy) and p

1

= mv (what we usually think of as [Newtonian℄

momentum). So the energy-momentum vetor lives up to its name.

The enterpiee of pre-relativity physis is Newton's 2nd Law, or f = ma = dp=dt. An

analogous equation should hold in SR, and the requirement that it be tensorial leads us

diretly to introdue a fore four-vetor f

�

satisfying

f

�

= m

d

2

d�

2

x

�

(� ) =

d

d�

p

�

(� ) : (1.102)

The simplest example of a fore in Newtonian physis is the fore due to gravity. In relativity,

however, gravity is not desribed by a fore, but rather by the urvature of spaetime itself.
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Instead, let us onsider eletromagnetism. The three-dimensional Lorentz fore is given

by f = q(E + v � B), where q is the harge on the partile. We would like a tensorial

generalization of this equation. There turns out to be a unique answer:

f

�

= qU

�

F

�

�

: (1.103)

You an hek for yourself that this redues to the Newtonian version in the limit of small

veloities. Notie how the requirement that the equation be tensorial, whih is one way of

guaranteeing Lorentz invariane, severely restrited the possible expressions we ould get.

This is an example of a very general phenomenon, in whih a small number of an apparently

endless variety of possible physial laws are piked out by the demands of symmetry.

Although p

�

provides a omplete desription of the energy and momentum of a partile,

for extended systems it is neessary to go further and de�ne the energy-momentumtensor

(sometimes alled the stress-energy tensor), T

��

. This is a symmetri (2; 0) tensor whih tells

us all we need to know about the energy-like aspets of a system: energy density, pressure,

stress, and so forth. A general de�nition of T

��

is \the ux of four-momentum p

�

aross a

surfae of onstant x

�

". To make this more onrete, let's onsider the very general ategory

of matter whih may be haraterized as a uid | a ontinuum of matter desribed by

marosopi quantities suh as temperature, pressure, entropy, visosity, et. In fat this

de�nition is so general that it is of little use. In general relativity essentially all interesting

types of matter an be thought of as perfet uids, from stars to eletromagneti �elds to

the entire universe. Shutz de�nes a perfet uid to be one with no heat ondution and no

visosity, while Weinberg de�nes it as a uid whih looks isotropi in its rest frame; these

two viewpoints turn out to be equivalent. Operationally, you should think of a perfet uid

as one whih may be ompletely haraterized by its pressure and density.

To understand perfet uids, let's start with the even simpler example of dust. Dust

is de�ned as a olletion of partiles at rest with respet to eah other, or alternatively

as a perfet uid with zero pressure. Sine the partiles all have an equal veloity in any

�xed inertial frame, we an imagine a \four-veloity �eld" U

�

(x) de�ned all over spaetime.

(Indeed, its omponents are the same at eah point.) De�ne the number-ux four-vetor

to be

N

�

= nU

�

; (1.104)

where n is the number density of the partiles as measured in their rest frame. Then N

0

is the number density of partiles as measured in any other frame, while N

i

is the ux of

partiles in the x

i

diretion. Let's now imagine that eah of the partiles have the same mass

m. Then in the rest frame the energy density of the dust is given by

� = nm : (1.105)
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By de�nition, the energy density ompletely spei�es the dust. But � only measures the

energy density in the rest frame; what about other frames? We notie that both n and

m are 0-omponents of four-vetors in their rest frame; spei�ally, N

�

= (n; 0; 0; 0) and

p

�

= (m; 0; 0; 0). Therefore � is the � = 0, � = 0 omponent of the tensor p
N as measured

in its rest frame. We are therefore led to de�ne the energy-momentum tensor for dust:

T

��

dust

= p

�

N

�

= nmU

�

U

�

= �U

�

U

�

; (1.106)

where � is de�ned as the energy density in the rest frame.

Having mastered dust, more general perfet uids are not muh more ompliated. Re-

member that \perfet" an be taken to mean \isotropi in its rest frame." This in turn

means that T

��

is diagonal | there is no net ux of any omponent of momentum in an

orthogonal diretion. Furthermore, the nonzero spaelike omponents must all be equal,

T

11

= T

22

= T

33

. The only two independent numbers are therefore T

00

and one of the T

ii

;

we an hoose to all the �rst of these the energy density �, and the seond the pressure

p. (Sorry that it's the same letter as the momentum.) The energy-momentum tensor of a

perfet uid therefore takes the following form in its rest frame:

T

��

=

0

B

B

B

�

� 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1

C

C

C

A

: (1.107)

We would like, of ourse, a formula whih is good in any frame. For dust we had T

��

=

�U

�

U

�

, so we might begin by guessing (�+ p)U

�

U

�

, whih gives

0

B

B

B

�

� + p 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

: (1.108)

To get the answer we want we must therefore add

0

B

B

B

�

�p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1

C

C

C

A

: (1.109)

Fortunately, this has an obvious ovariant generalization, namely p�

��

. Thus, the general

form of the energy-momentum tensor for a perfet uid is

T

��

= (�+ p)U

�

U

�

+ p�

��

: (1.110)

This is an important formula for appliations suh as stellar struture and osmology.
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As further examples, let's onsider the energy-momentum tensors of eletromagnetism

and salar �eld theory. Without any explanation at all, these are given by

T

��

e+m

=

�1

4�

(F

��

F

�

�

�

1

4

�

��

F

��

F

��

) ; (1.111)

and

T

��

salar

= �

��

�

��

�

�

��

�

��

1

2

�

��

(�

��

�

�

��

�

�+m

2

�

2

) : (1.112)

You an hek for yourself that, for example, T

00

in eah ase is equal to what you would

expet the energy density to be.

Besides being symmetri, T

��

has the even more important property of being onserved.

In this ontext, onservation is expressed as the vanishing of the \divergene":

�

�

T

��

= 0 : (1.113)

This is a set of four equations, one for eah value of �. The � = 0 equation orresponds to

onservation of energy, while �

�

T

�k

= 0 expresses onservation of the k

th

omponent of the

momentum. We are not going to prove this in general; the proof follows for any individual

soure of matter from the equations of motion obeyed by that kind of matter. In fat, one

way to de�ne T

��

would be \a (2; 0) tensor with units of energy per volume, whih is on-

served." You an prove onservation of the energy-momentum tensor for eletromagnetism,

for example, by taking the divergene of (1.111) and using Maxwell's equations as previously

disussed.

A �nal aside: we have already mentioned that in general relativity gravitation does not

ount as a \fore." As a related point, the gravitational �eld also does not have an energy-

momentum tensor. In fat it is very hard to ome up with a sensible loal expression for the

energy of a gravitational �eld; a number of suggestions have been made, but they all have

their drawbaks. Although there is no \orret" answer, it is an important issue from the

point of view of asking seemingly reasonable questions suh as \What is the energy emitted

per seond from a binary pulsar as the result of gravitational radiation?"
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2 Manifolds

After the invention of speial relativity, Einstein tried for a number of years to invent a

Lorentz-invariant theory of gravity, without suess. His eventual breakthrough was to

replae Minkowski spaetime with a urved spaetime, where the urvature was reated by

(and reated bak on) energy and momentum. Before we explore how this happens, we have

to learn a bit about the mathematis of urved spaes. First we will take a look at manifolds

in general, and then in the next setion study urvature. In the interest of generality we will

usually work in n dimensions, although you are permitted to take n = 4 if you like.

A manifold (or sometimes \di�erentiable manifold") is one of the most fundamental

onepts in mathematis and physis. We are all aware of the properties of n-dimensional

Eulidean spae, R

n

, the set of n-tuples (x

1

; : : : ; x

n

). The notion of a manifold aptures the

idea of a spae whih may be urved and have a ompliated topology, but in loal regions

looks just likeR

n

. (Here by \looks like" we do not mean that the metri is the same, but only

basi notions of analysis like open sets, funtions, and oordinates.) The entire manifold is

onstruted by smoothly sewing together these loal regions. Examples of manifolds inlude:

� R

n

itself, inluding the line (R), the plane (R

2

), and so on. This should be obvious,

sine R

n

looks like R

n

not only loally but globally.

� The n-sphere, S

n

. This an be de�ned as the lous of all points some �xed distane

from the origin in R

n+1

. The irle is of ourse S

1

, and the two-sphere S

2

will be one

of our favorite examples of a manifold.

� The n-torus T

n

results from taking an n-dimensional ube and identifying opposite

sides. Thus T

2

is the traditional surfae of a doughnut.

identify opposite sides

31
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� A Riemann surfae of genus g is essentially a two-torus with g holes instead of just

one. S

2

may be thought of as a Riemann surfae of genus zero. For those of you who

know what the words mean, every \ompat orientable boundaryless" two-dimensional

manifold is a Riemann surfae of some genus.

genus 0 genus 1 genus 2

� More abstratly, a set of ontinuous transformations suh as rotations in R

n

forms a

manifold. Lie groups are manifolds whih also have a group struture.

� The diret produt of two manifolds is a manifold. That is, given manifolds M and

M

0

of dimension n and n

0

, we an onstrut a manifoldM �M

0

, of dimension n+ n

0

,

onsisting of ordered pairs (p; p

0

) for all p 2M and p

0

2M

0

.

With all of these examples, the notion of a manifold may seem vauous; what isn't a

manifold? There are plenty of things whih are not manifolds, beause somewhere they

do not look loally like R

n

. Examples inlude a one-dimensional line running into a two-

dimensional plane, and two ones stuk together at their verties. (A single one is okay;

you an imagine smoothing out the vertex.)

We will now approah the rigorous de�nition of this simple idea, whih requires a number

of preliminary de�nitions. Many of them are pretty lear anyway, but it's nie to be omplete.
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The most elementary notion is that of a map between two sets. (We assume you know

what a set is.) Given two setsM and N , a map � :M ! N is a relationship whih assigns, to

eah element ofM , exatly one element of N . A map is therefore just a simple generalization

of a funtion. The anonial piture of a map looks like this:

ϕ

M

N

Given two maps � : A! B and  : B ! C, we de�ne the omposition  Æ � : A! C

by the operation ( Æ �)(a) =  (�(a)). So a 2 A, �(a) 2 B, and thus ( Æ �)(a) 2 C. The

order in whih the maps are written makes sense, sine the one on the right ats �rst. In

pitures:

ψ   ϕ

A

B

C

ϕ ψ

A map � is alled one-to-one (or \injetive") if eah element of N has at most one

element of M mapped into it, and onto (or \surjetive") if eah element of N has at least

one element of M mapped into it. (If you think about it, a better name for \one-to-one"

would be \two-to-two".) Consider a funtion � : R! R. Then �(x) = e

x

is one-to-one, but

not onto; �(x) = x

3

� x is onto, but not one-to-one; �(x) = x

3

is both; and �(x) = x

2

is

neither.

The set M is known as the domain of the map �, and the set of points in N whih M

gets mapped into is alled the image of �. For some subset U � N , the set of elements of

M whih get mapped to U is alled the preimage of U under �, or �

�1

(U). A map whih is
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x x

x

one-to-one, 

not onto

onto, not

one-to-one

both neither

x x

x  - xe
x 3

23

x

both one-to-one and onto is known as invertible (or \bijetive"). In this ase we an de�ne

the inverse map �

�1

: N ! M by (�

�1

Æ �)(a) = a. (Note that the same symbol �

�1

is

used for both the preimage and the inverse map, even though the former is always de�ned

and the latter is only de�ned in some speial ases.) Thus:

-1

M N
ϕ

ϕ

The notion of ontinuity of a map between topologial spaes (and thus manifolds) is

atually a very subtle one, the preise formulation of whih we won't really need. However

the intuitive notions of ontinuity and di�erentiability of maps � : R

m

! R

n

between

Eulidean spaes are useful. A map from R

m

to R

n

takes an m-tuple (x

1

; x

2

; : : : ; x

m

) to an

n-tuple (y

1

; y

2

; : : : ; y

n

), and an therefore be thought of as a olletion of n funtions �

i

of
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m variables:

y

1

= �

1

(x

1

; x

2

; : : : ; x

m

)

y

2

= �

2

(x

1

; x

2

; : : : ; x

m

)

�

�

�

y

n

= �

n

(x

1

; x

2

; : : : ; x

m

) :

(2.1)

We will refer to any one of these funtions as C

p

if it is ontinuous and p-times di�erentiable,

and refer to the entire map � : R

m

! R

n

as C

p

if eah of its omponent funtions are at

least C

p

. Thus a C

0

map is ontinuous but not neessarily di�erentiable, while a C

1

map

is ontinuous and an be di�erentiated as many times as you like. C

1

maps are sometimes

alled smooth. We will all two sets M and N di�eomorphi if there exists a C

1

map

� :M ! N with a C

1

inverse �

�1

: N !M ; the map � is then alled a di�eomorphism.

Aside: The notion of two spaes being di�eomorphi only applies to manifolds, where a

notion of di�erentiability is inherited from the fat that the spae resemblesR

n

loally. But

\ontinuity" of maps between topologial spaes (not neessarily manifolds) an be de�ned,

and we say that two suh spaes are \homeomorphi," whih means \topologially equivalent

to," if there is a ontinuous map between them with a ontinuous inverse. It is therefore

oneivable that spaes exist whih are homeomorphi but not di�eomorphi; topologially

the same but with distint \di�erentiable strutures." In 1964 Milnor showed that S

7

had 28

di�erent di�erentiable strutures; it turns out that for n < 7 there is only one di�erentiable

struture on S

n

, while for n > 7 the number grows very large. R

4

has in�nitely many

di�erentiable strutures.

One piee of onventional alulus that we will need later is the hain rule. Let us

imagine that we have maps f : R

m

! R

n

and g : R

n

! R

l

, and therefore the omposition

(g Æ f) : R

m

! R

l

.

g    f

g

R

R

R
m

n

l

f

We an represent eah spae in terms of oordinates: x

a

on R

m

, y

b

on R

n

, and z



on

R

l

, where the indies range over the appropriate values. The hain rule relates the partial
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derivatives of the omposition to the partial derivatives of the individual maps:

�

�x

a

(g Æ f)



=

X

b

�f

b

�x

a

�g



�y

b

: (2.2)

This is usually abbreviated to

�

�x

a

=

X

b

�y

b

�x

a

�

�y

b

: (2.3)

There is nothing illegal or immoral about using this form of the hain rule, but you should

be able to visualize the maps that underlie the onstrution. Reall that when m = n

the determinant of the matrix �y

b

=�x

a

is alled the Jaobian of the map, and the map is

invertible whenever the Jaobian is nonzero.

These basi de�nitions were presumably familiar to you, even if only vaguely remembered.

We will now put them to use in the rigorous de�nition of a manifold. Unfortunately, a

somewhat baroque proedure is required to formalize this relatively intuitive notion. We

will �rst have to de�ne the notion of an open set, on whih we an put oordinate systems,

and then sew the open sets together in an appropriate way.

Start with the notion of an open ball, whih is the set of all points x in R

n

suh that

jx � yj < r for some �xed y 2 R

n

and r 2 R, where jx� yj = [

P

i

(x

i

� y

i

)

2

℄

1=2

. Note that

this is a strit inequality | the open ball is the interior of an n-sphere of radius r entered

at y.

r

y

open ball

An open set in R

n

is a set onstruted from an arbitrary (maybe in�nite) union of open

balls. In other words, V � R

n

is open if, for any y 2 V , there is an open ball entered

at y whih is ompletely inside V . Roughly speaking, an open set is the interior of some

(n � 1)-dimensional losed surfae (or the union of several suh interiors). By de�ning a

notion of open sets, we have equipped R

n

with a topology | in this ase, the \standard

metri topology."
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A hart or oordinate system onsists of a subset U of a set M , along with a one-to-

one map � : U ! R

n

, suh that the image �(U) is open in R. (Any map is onto its image,

so the map � : U ! �(U) is invertible.) We then an say that U is an open set in M . (We

have thus indued a topology on M , although we will not explore this.)

U

U

M

ϕ(   )

R
n

ϕ

A C

1

atlas is an indexed olletion of harts f(U

�

; �

�

)g whih satis�es two onditions:

1. The union of the U

�

is equal to M ; that is, the U

�

over M .

2. The harts are smoothly sewn together. More preisely, if two harts overlap, U

�

\U

�

6=

;, then the map (�

�

Æ �

�1

�

) takes points in �

�

(U

�

\ U

�

) � R

n

onto �

�

(U

�

\ U

�

) � R

n

,

and all of these maps must be C

1

where they are de�ned. This should be learer in

pitures:

Uα

ϕ (    )

ϕ (    )

ϕ

ϕ

ϕ    ϕ

ϕ    ϕ
β α

α β

α

β
Uβ

Uα

α

β

Uβ

-1

-1

these maps are only
defined on the shaded
regions, and must be
smooth there.

M

R

R

n

n
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So a hart is what we normally think of as a oordinate system on some open set, and an

atlas is a system of harts whih are smoothly related on their overlaps.

At long last, then: a C

1

n-dimensional manifold (or n-manifold for short) is simply

a set M along with a \maximal atlas", one that ontains every possible ompatible hart.

(We an also replae C

1

by C

p

in all the above de�nitions. For our purposes the degree of

di�erentiability of a manifold is not ruial; we will always assume that any manifold is as

di�erentiable as neessary for the appliation under onsideration.) The requirement that

the atlas be maximal is so that two equivalent spaes equipped with di�erent atlases don't

ount as di�erent manifolds. This de�nition aptures in formal terms our notion of a set

that looks loally like R

n

. Of ourse we will rarely have to make use of the full power of the

de�nition, but preision is its own reward.

One thing that is nie about our de�nition is that it does not rely on an embedding of the

manifold in some higher-dimensional Eulidean spae. In fat any n-dimensional manifold

an be embedded in R

2n

(\Whitney's embedding theorem"), and sometimes we will make

use of this fat (suh as in our de�nition of the sphere above). But it's important to reognize

that the manifold has an individual existene independent of any embedding. We have no

reason to believe, for example, that four-dimensional spaetime is stuk in some larger spae.

(Atually a number of people, string theorists and so forth, believe that our four-dimensional

world is part of a ten- or eleven-dimensional spaetime, but as far as GR is onerned the

4-dimensional view is perfetly adequate.)

Why was it neessary to be so �niky about harts and their overlaps, rather than just

overing every manifold with a single hart? Beause most manifolds annot be overed

with just one hart. Consider the simplest example, S

1

. There is a onventional oordinate

system, � : S

1

! R, where � = 0 at the top of the irle and wraps around to 2�. However,

in the de�nition of a hart we have required that the image �(S

1

) be open in R. If we inlude

either � = 0 or � = 2�, we have a losed interval rather than an open one; if we exlude both

points, we haven't overed the whole irle. So we need at least two harts, as shown.

U

S
1

2

U1

A somewhat more ompliated example is provided by S

2

, where one again no single
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hart will over the manifold. A Merator projetion, traditionally used for world maps,

misses both the North and South poles (as well as the International Date Line, whih involves

the same problem with � that we found for S

1

.) Let's take S

2

to be the set of points in R

3

de�ned by (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

= 1. We an onstrut a hart from an open set U

1

, de�ned

to be the sphere minus the north pole, via \stereographi projetion":

x

x

x   = -1

x1

2

3

(y  , y  )1 2
3

(x  , x  , x  )1 32

Thus, we draw a straight line from the north pole to the plane de�ned by x

3

= �1, and

assign to the point on S

2

interepted by the line the Cartesian oordinates (y

1

; y

2

) of the

appropriate point on the plane. Expliitly, the map is given by

�

1

(x

1

; x

2

; x

3

) � (y

1

; y

2

) =

 

2x

1

1� x

3

;

2x

2

1� x

3

!

: (2.4)

You are enouraged to hek this for yourself. Another hart (U

2

; �

2

) is obtained by projet-

ing from the south pole to the plane de�ned by x

3

= +1. The resulting oordinates over

the sphere minus the south pole, and are given by

�

2

(x

1

; x

2

; x

3

) � (z

1

; z

2

) =

 

2x

1

1 + x

3

;

2x

2

1 + x

3

!

: (2.5)

Together, these two harts over the entire manifold, and they overlap in the region �1 <

x

3

< +1. Another thing you an hek is that the omposition �

2

Æ �

�1

1

is given by

z

i

=

4y

i

[(y

1

)

2

+ (y

2

)

2

℄

; (2.6)

and is C

1

in the region of overlap. As long as we restrit our attention to this region, (2.6)

is just what we normally think of as a hange of oordinates.

We therefore see the neessity of harts and atlases: many manifolds annot be overed

with a single oordinate system. (Although some an, even ones with nontrivial topology.

Can you think of a single good oordinate system that overs the ylinder, S

1

�R?) Never-

theless, it is very often most onvenient to work with a single hart, and just keep trak of

the set of points whih aren't inluded.
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The fat that manifolds look loally like R

n

, whih is manifested by the onstrution of

oordinate harts, introdues the possibility of analysis on manifolds, inluding operations

suh as di�erentiation and integration. Consider two manifolds M and N of dimensions m

and n, with oordinate harts � on M and  on N . Imagine we have a funtion f :M ! N ,

M Nf

R Rψ

ϕϕ-1

m
f       ϕ-1 n

-1ψ ψ

Just thinking of M and N as sets, we annot nonhalantly di�erentiate the map f , sine we

don't know what suh an operation means. But the oordinate harts allow us to onstrut

the map ( Æ f Æ �

�1

) : R

m

! R

n

. (Feel free to insert the words \where the maps are

de�ned" wherever appropriate, here and later on.) This is just a map between Eulidean

spaes, and all of the onepts of advaned alulus apply. For example f , thought of as

an N -valued funtion on M , an be di�erentiated to obtain �f=�x

�

, where the x

�

represent

R

m

. The point is that this notation is a shortut, and what is really going on is

�f

�x

�

�

�

�x

�

( Æ f Æ �

�1

)(x

�

) : (2.7)

It would be far too unwieldy (not to mention pedanti) to write out the oordinate maps

expliitly in every ase. The shorthand notation of the left-hand-side will be suÆient for

most purposes.

Having onstruted this groundwork, we an now proeed to introdue various kinds

of struture on manifolds. We begin with vetors and tangent spaes. In our disussion

of speial relativity we were intentionally vague about the de�nition of vetors and their

relationship to the spaetime. One point that was stressed was the notion of a tangent spae

| the set of all vetors at a single point in spaetime. The reason for this emphasis was to

remove from your minds the idea that a vetor strethes from one point on the manifold to

another, but instead is just an objet assoiated with a single point. What is temporarily

lost by adopting this view is a way to make sense of statements like \the vetor points in
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the x diretion" | if the tangent spae is merely an abstrat vetor spae assoiated with

eah point, it's hard to know what this should mean. Now it's time to �x the problem.

Let's imagine that we wanted to onstrut the tangent spae at a point p in a manifold

M , using only things that are intrinsi to M (no embeddings in higher-dimensional spaes

et.). One �rst guess might be to use our intuitive knowledge that there are objets alled

\tangent vetors to urves" whih belong in the tangent spae. We might therefore onsider

the set of all parameterized urves through p | that is, the spae of all (nondegenerate)

maps  : R! M suh that p is in the image of . The temptation is to de�ne the tangent

spae as simply the spae of all tangent vetors to these urves at the point p. But this is

obviously heating; the tangent spae T

p

is supposed to be the spae of vetors at p, and

before we have de�ned this we don't have an independent notion of what \the tangent vetor

to a urve" is supposed to mean. In some oordinate system x

�

any urve through p de�nes

an element of R

n

spei�ed by the n real numbers dx

�

=d� (where � is the parameter along

the urve), but this map is learly oordinate-dependent, whih is not what we want.

Nevertheless we are on the right trak, we just have to make things independent of

oordinates. To this end we de�ne F to be the spae of all smooth funtions on M (that

is, C

1

maps f : M ! R). Then we notie that eah urve through p de�nes an operator

on this spae, the diretional derivative, whih maps f ! df=d� (at p). We will make the

following laim: the tangent spae T

p

an be identi�ed with the spae of diretional derivative

operators along urves through p. To establish this idea we must demonstrate two things:

�rst, that the spae of diretional derivatives is a vetor spae, and seond that it is the

vetor spae we want (it has the same dimensionality as M , yields a natural idea of a vetor

pointing along a ertain diretion, and so on).

The �rst laim, that diretional derivatives form a vetor spae, seems straightforward

enough. Imagine two operators

d

d�

and

d

d�

representing derivatives along two urves through

p. There is no problem adding these and saling by real numbers, to obtain a new operator

a

d

d�

+ b

d

d�

. It is not immediately obvious, however, that the spae loses; i.e., that the

resulting operator is itself a derivative operator. A good derivative operator is one that

ats linearly on funtions, and obeys the onventional Leibniz (produt) rule on produts

of funtions. Our new operator is manifestly linear, so we need to verify that it obeys the

Leibniz rule. We have

 

a

d

d�

+ b

d

d�

!

(fg) = af

dg

d�

+ ag

df

d�

+ bf

dg

d�

+ bg

df

d�

=

 

a

df

d�

+ b

df

d�

!

g +

 

a

dg

d�

+ b

dg

d�

!

f : (2.8)

As we had hoped, the produt rule is satis�ed, and the set of diretional derivatives is

therefore a vetor spae.



2 MANIFOLDS 42

Is it the vetor spae that we would like to identify with the tangent spae? The easiest

way to beome onvined is to �nd a basis for the spae. Consider again a oordinate hart

with oordinates x

�

. Then there is an obvious set of n diretional derivatives at p, namely

the partial derivatives �

�

at p.

p

1

ρ

2

ρ

x
x2

1

We are now going to laim that the partial derivative operators f�

�

g at p form a basis for

the tangent spae T

p

. (It follows immediately that T

p

is n-dimensional, sine that is the

number of basis vetors.) To see this we will show that any diretional derivative an be

deomposed into a sum of real numbers times partial derivatives. This is in fat just the

familiar expression for the omponents of a tangent vetor, but it's nie to see it from the

big-mahinery approah. Consider an n-manifold M , a oordinate hart � : M ! R

n

, a

urve  : R!M , and a funtion f :M ! R. This leads to the following tangle of maps:

f -1       ϕ

ϕϕ-1

f

M

R

R

γ

ϕ γ

f γ

x
µ

R
n

If � is the parameter along , we want to expand the vetor/operator

d

d�

in terms of the
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partials �

�

. Using the hain rule (2.2), we have

d

d�

f =

d

d�

(f Æ )

=

d

d�

[(f Æ �

�1

) Æ (� Æ )℄

=

d(� Æ )

�

d�

�(f Æ �

�1

)

�x

�

=

dx

�

d�

�

�

f : (2.9)

The �rst line simply takes the informal expression on the left hand side and rewrites it as

an honest derivative of the funtion (f Æ ) : R! R. The seond line just omes from the

de�nition of the inverse map �

�1

(and assoiativity of the operation of omposition). The

third line is the formal hain rule (2.2), and the last line is a return to the informal notation

of the start. Sine the funtion f was arbitrary, we have

d

d�

=

dx

�

d�

�

�

: (2.10)

Thus, the partials f�

�

g do indeed represent a good basis for the vetor spae of diretional

derivatives, whih we an therefore safely identify with the tangent spae.

Of ourse, the vetor represented by

d

d�

is one we already know; it's the tangent vetor

to the urve with parameter �. Thus (2.10) an be thought of as a restatement of (1.24),

where we laimed the that omponents of the tangent vetor were simply dx

�

=d�. The only

di�erene is that we are working on an arbitrary manifold, and we have spei�ed our basis

vetors to be ê

(�)

= �

�

.

This partiular basis (ê

(�)

= �

�

) is known as a oordinate basis for T

p

; it is the

formalization of the notion of setting up the basis vetors to point along the oordinate

axes. There is no reason why we are limited to oordinate bases when we onsider tangent

vetors; it is sometimes more onvenient, for example, to use orthonormal bases of some

sort. However, the oordinate basis is very simple and natural, and we will use it almost

exlusively throughout the ourse.

One of the advantages of the rather abstrat point of view we have taken toward vetors

is that the transformation law is immediate. Sine the basis vetors are ê

(�)

= �

�

, the basis

vetors in some new oordinate system x

�

0

are given by the hain rule (2.3) as

�

�

0

=

�x

�

�x

�

0

�

�

: (2.11)

We an get the transformation law for vetor omponents by the same tehnique used in at

spae, demanding the the vetor V = V

�

�

�

be unhanged by a hange of basis. We have

V

�

�

�

= V

�

0

�

�

0

= V

�

0

�x

�

�x

�

0

�

�

; (2.12)



2 MANIFOLDS 44

and hene (sine the matrix �x

�

0

=�x

�

is the inverse of the matrix �x

�

=�x

�

0

),

V

�

0

=

�x

�

0

�x

�

V

�

: (2.13)

Sine the basis vetors are usually not written expliitly, the rule (2.13) for transforming

omponents is what we all the \vetor transformation law." We notie that it is om-

patible with the transformation of vetor omponents in speial relativity under Lorentz

transformations, V

�

0

= �

�

0

�

V

�

, sine a Lorentz transformation is a speial kind of oordi-

nate transformation, with x

�

0

= �

�

0

�

x

�

. But (2.13) is muh more general, as it enompasses

the behavior of vetors under arbitrary hanges of oordinates (and therefore bases), not just

linear transformations. As usual, we are trying to emphasize a somewhat subtle ontologial

distintion | tensor omponents do not hange when we hange oordinates, they hange

when we hange the basis in the tangent spae, but we have deided to use the oordinates

to de�ne our basis. Therefore a hange of oordinates indues a hange of basis:

ρ

2

ρ

1

ρ
2 ρ

1

x

x

µ

µ’

’

’

Having explored the world of vetors, we ontinue to retrae the steps we took in at

spae, and now onsider dual vetors (one-forms). One again the otangent spae T

�

p

is the

set of linear maps ! : T

p

! R. The anonial example of a one-form is the gradient of a

funtion f , denoted df . Its ation on a vetor

d

d�

is exatly the diretional derivative of the

funtion:

df

 

d

d�

!

=

df

d�

: (2.14)

It's tempting to think, \why shouldn't the funtion f itself be onsidered the one-form, and

df=d� its ation?" The point is that a one-form, like a vetor, exists only at the point it is

de�ned, and does not depend on information at other points on M . If you know a funtion

in some neighborhood of a point you an take its derivative, but not just from knowing

its value at the point; the gradient, on the other hand, enodes preisely the information
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neessary to take the diretional derivative along any urve through p, ful�lling its role as a

dual vetor.

Just as the partial derivatives along oordinate axes provide a natural basis for the

tangent spae, the gradients of the oordinate funtions x

�

provide a natural basis for the

otangent spae. Reall that in at spae we onstruted a basis for T

�

p

by demanding that

^

�

(�)

(ê

(�)

) = Æ

�

�

. Continuing the same philosophy on an arbitrary manifold, we �nd that (2.14)

leads to

dx

�

(�

�

) =

�x

�

�x

�

= Æ

�

�

: (2.15)

Therefore the gradients fdx

�

g are an appropriate set of basis one-forms; an arbitrary one-

form is expanded into omponents as ! = !

�

dx

�

.

The transformation properties of basis dual vetors and omponents follow from what is

by now the usual proedure. We obtain, for basis one-forms,

dx

�

0

=

�x

�

0

�x

�

dx

�

; (2.16)

and for omponents,

!

�

0

=

�x

�

�x

�

0

!

�

: (2.17)

We will usually write the omponents !

�

when we speak about a one-form !.

The transformation law for general tensors follows this same pattern of replaing the

Lorentz transformation matrix used in at spae with a matrix representing more general

oordinate transformations. A (k; l) tensor T an be expanded

T = T

�

1

����

k

�

1

����

l

�

�

1


 � � � 
 �

�

k


 dx

�

1


 � � � 
 dx

�

l

; (2.18)

and under a oordinate transformation the omponents hange aording to

T

�

0

1

����

0

k

�

0

1

����

0

l

=

�x

�

0

1

�x

�

1

� � �

�x

�

0

k

�x

�

k

�x

�

1

�x

�

0

1

� � �

�x

�

l

�x

�

0

l

T

�

1

����

k

�

1

����

l

: (2.19)

This tensor transformation law is straightforward to remember, sine there really isn't any-

thing else it ould be, given the plaement of indies. However, it is often easier to transform

a tensor by taking the identity of basis vetors and one-forms as partial derivatives and gradi-

ents at fae value, and simply substituting in the oordinate transformation. As an example

onsider a symmetri (0; 2) tensor S on a 2-dimensional manifold, whose omponents in a

oordinate system (x

1

= x; x

2

= y) are given by

S

��

=

�

x 0

0 1

�

: (2.20)
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This an be written equivalently as

S = S

��

(dx

�


 dx

�

)

= x(dx)

2

+ (dy)

2

; (2.21)

where in the last line the tensor produt symbols are suppressed for brevity. Now onsider

new oordinates

x

0

= x

1=3

y

0

= e

x+y

: (2.22)

This leads diretly to

x = (x

0

)

3

y = ln(y

0

)� (x

0

)

3

dx = 3(x

0

)

2

dx

0

dy =

1

y

0

dy

0

� 3(x

0

)

2

dx

0

: (2.23)

We need only plug these expressions diretly into (2.21) to obtain (remembering that tensor

produts don't ommute, so dx

0

dy

0

6= dy

0

dx

0

):

S = 9(x

0

)

4

[1 + (x

0

)

3

℄(dx

0

)

2

� 3

(x

0

)

2

y

0

(dx

0

dy

0

+ dy

0

dx

0

) +

1

(y

0

)

2

(dy

0

)

2

; (2.24)

or

S

�

0

�

0

=

0

�

9(x

0

)

4

[1 + (x

0

)

3

℄ �3

(x

0

)

2

y

0

�3

(x

0

)

2

y

0

1

(y

0

)

2

1

A

: (2.25)

Notie that it is still symmetri. We did not use the transformation law (2.19) diretly, but

doing so would have yielded the same result, as you an hek.

For the most part the various tensor operations we de�ned in at spae are unaltered

in a more general setting: ontration, symmetrization, et. There are three important

exeptions: partial derivatives, the metri, and the Levi-Civita tensor. Let's look at the

partial derivative �rst.

The unfortunate fat is that the partial derivative of a tensor is not, in general, a new

tensor. The gradient, whih is the partial derivative of a salar, is an honest (0; 1) tensor, as

we have seen. But the partial derivative of higher-rank tensors is not tensorial, as we an see

by onsidering the partial derivative of a one-form, �

�

W

�

, and hanging to a new oordinate

system:

�

�x

�

0

W

�

0

=

�x

�

�x

�

0

�

�x

�

 

�x

�

�x

�

0

W

�

!

=

�x

�

�x

�

0

�x

�

�x

�

0

 

�

�x

�

W

�

!

+W

�

�x

�

�x

�

0

�

�x

�

�x

�

�x

�

0

: (2.26)



2 MANIFOLDS 47

The seond term in the last line should not be there if �

�

W

�

were to transform as a (0; 2)

tensor. As you an see, it arises beause the derivative of the transformation matrix does

not vanish, as it did for Lorentz transformations in at spae.

On the other hand, the exterior derivative operator d does form an antisymmetri (0; p+1)

tensor when ated on a p-form. For p = 1 we an see this from (2.26); the o�ending non-

tensorial term an be written

W

�

�x

�

�x

�

0

�

�x

�

�x

�

�x

�

0

= W

�

�

2

x

�

�x

�

0

�x

�

0

: (2.27)

This expression is symmetri in �

0

and �

0

, sine partial derivatives ommute. But the exterior

derivative is de�ned to be the antisymmetrized partial derivative, so this term vanishes

(the antisymmetri part of a symmetri expression is zero). We are then left with the

orret tensor transformation law; extension to arbitrary p is straightforward. So the exterior

derivative is a legitimate tensor operator; it is not, however, an adequate substitute for the

partial derivative, sine it is only de�ned on forms. In the next setion we will de�ne a

ovariant derivative, whih an be thought of as the extension of the partial derivative to

arbitrary manifolds.

The metri tensor is suh an important objet in urved spae that it is given a new

symbol, g

��

(while �

��

is reserved spei�ally for the Minkowski metri). There are few

restritions on the omponents of g

��

, other than that it be a symmetri (0; 2) tensor. It is

usually taken to be non-degenerate, meaning that the determinant g = jg

��

j doesn't vanish.

This allows us to de�ne the inverse metri g

��

via

g

��

g

��

= Æ

�

�

: (2.28)

The symmetry of g

��

implies that g

��

is also symmetri. Just as in speial relativity, the

metri and its inverse may be used to raise and lower indies on tensors.

It will take several weeks to fully appreiate the role of the metri in all of its glory, but

for purposes of inspiration we an list the various uses to whih g

��

will be put: (1) the

metri supplies a notion of \past" and \future"; (2) the metri allows the omputation of

path length and proper time; (3) the metri determines the \shortest distane" between two

points (and therefore the motion of test partiles); (4) the metri replaes the Newtonian

gravitational �eld �; (5) the metri provides a notion of loally inertial frames and therefore

a sense of \no rotation"; (6) the metri determines ausality, by de�ning the speed of light

faster than whih no signal an travel; (7) the metri replaes the traditional Eulidean

three-dimensional dot produt of Newtonian mehanis; and so on. Obviously these ideas

are not all ompletely independent, but we get some sense of the importane of this tensor.

In our disussion of path lengths in speial relativity we (somewhat handwavingly) in-

trodued the line element as ds

2

= �

��

dx

�

dx

�

, whih was used to get the length of a path.
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Of ourse now that we know that dx

�

is really a basis dual vetor, it beomes natural to use

the terms \metri" and \line element" interhangeably, and write

ds

2

= g

��

dx

�

dx

�

: (2.29)

(To be perfetly onsistent we should write this as \g", and sometimes will, but more often

than not g is used for the determinant jg

��

j.) For example, we know that the Eulidean line

element in a three-dimensional spae with Cartesian oordinates is

ds

2

= (dx)

2

+ (dy)

2

+ (dz)

2

: (2.30)

We an now hange to any oordinate system we hoose. For example, in spherial oordi-

nates we have

x = r sin � os �

y = r sin � sin�

z = r os � ; (2.31)

whih leads diretly to

ds

2

= dr

2

+ r

2

d�

2

+ r

2

sin

2

� d�

2

: (2.32)

Obviously the omponents of the metri look di�erent than those in Cartesian oordinates,

but all of the properties of the spae remain unaltered.

Perhaps this is a good time to note that most referenes are not suÆiently piky to

distinguish between \dx", the informal notion of an in�nitesimal displaement, and \dx",

the rigorous notion of a basis one-form given by the gradient of a oordinate funtion. In

fat our notation \ds

2

" does not refer to the exterior derivative of anything, or the square of

anything; it's just onventional shorthand for the metri tensor. On the other hand, \(dx)

2

"

refers spei�ally to the (0; 2) tensor dx
 dx.

A good example of a spae with urvature is the two-sphere, whih an be thought of as

the lous of points in R

3

at distane 1 from the origin. The metri in the (�; �) oordinate

system omes from setting r = 1 and dr = 0 in (2.32):

ds

2

= d�

2

+ sin

2

� d�

2

: (2.33)

This is ompletely onsistent with the interpretation of ds as an in�nitesimal length, as

illustrated in the �gure.

As we shall see, the metri tensor ontains all the information we need to desribe the

urvature of the manifold (at least in Riemannian geometry; we will atually indiate some-

what more general approahes). In Minkowski spae we an hoose oordinates in whih the

omponents of the metri are onstant; but it should be lear that the existene of urvature
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S

ds
θ

sin θ dφ

d

2

is more subtle than having the metri depend on the oordinates, sine in the example above

we showed how the metri in at Eulidean spae in spherial oordinates is a funtion of r

and �. Later, we shall see that onstany of the metri omponents is suÆient for a spae

to be at, and in fat there always exists a oordinate system on any at spae in whih

the metri is onstant. But we might not want to work in suh a oordinate system, and we

might not even know how to �nd it; therefore we will want a more preise haraterization

of the urvature, whih will be introdued down the road.

A useful haraterization of the metri is obtained by putting g

��

into its anonial

form. In this form the metri omponents beome

g

��

= diag (�1;�1; : : : ;�1;+1;+1; : : : ;+1; 0; 0; : : : ; 0) ; (2.34)

where \diag" means a diagonal matrix with the given elements. If n is the dimension of

the manifold, s is the number of +1's in the anonial form, and t is the number of �1's,

then s � t is the signature of the metri (the di�erene in the number of minus and plus

signs), and s+ t is the rank of the metri (the number of nonzero eigenvalues). If a metri

is ontinuous, the rank and signature of the metri tensor �eld are the same at every point,

and if the metri is nondegenerate the rank is equal to the dimension n. We will always deal

with ontinuous, nondegenerate metris. If all of the signs are positive (t = 0) the metri

is alled Eulidean or Riemannian (or just \positive de�nite"), while if there is a single

minus (t = 1) it is alled Lorentzian or pseudo-Riemannian, and any metri with some

+1's and some �1's is alled \inde�nite." (So the word \Eulidean" sometimes means that

the spae is at, and sometimes doesn't, but always means that the anonial form is stritly

positive; the terminology is unfortunate but standard.) The spaetimes of interest in general

relativity have Lorentzian metris.

We haven't yet demonstrated that it is always possible to but the metri into anonial

form. In fat it is always possible to do so at some point p 2 M , but in general it will
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only be possible at that single point, not in any neighborhood of p. Atually we an do

slightly better than this; it turns out that at any point p there exists a oordinate system in

whih g

��

takes its anonial form and the �rst derivatives �

�

g

��

all vanish (while the seond

derivatives �

�

�

�

g

��

annot be made to all vanish). Suh oordinates are known as Riemann

normal oordinates, and the assoiated basis vetors onstitute a loal Lorentz frame.

Notie that in Riemann normal oordinates (or RNC's) the metri at p looks like that of at

spae \to �rst order." This is the rigorous notion of the idea that \small enough regions of

spaetime look like at (Minkowski) spae." (Also, there is no diÆulty in simultaneously

onstruting sets of basis vetors at every point inM suh that the metri takes its anonial

form; the problem is that in general this will not be a oordinate basis, and there will be no

way to make it into one.)

We won't onsider the detailed proof of this statement; it an be found in Shutz, pp. 158-

160, where it goes by the name of the \loal atness theorem." (He also alls loal Lorentz

frames \momentarily omoving referene frames," or MCRF's.) It is useful to see a sketh

of the proof, however, for the spei� ase of a Lorentzian metri in four dimensions. The

idea is to onsider the transformation law for the metri

g

�

0

�

0

=

�x

�

�x

�

0

�x

�

�x

�

0

g

��

; (2.35)

and expand both sides in Taylor series in the sought-after oordinates x

�

0

. The expansion

of the old oordinates x

�

looks like

x

�

=

 

�x

�

�x

�

0

!

p

x

�

0

+

1

2

 

�

2

x

�

�x

�

0

1

�x

�

0

2

!

p

x

�

0

1

x

�

0

2

+

1

6

 

�

3

x

�

�x

�

0

1

�x

�

0

2

�x

�

0

3

!

p

x

�

0

1

x

�

0

2

x

�

0

3

+ � � � ; (2.36)

with the other expansions proeeding along the same lines. (For simpliity we have set

x

�

(p) = x

�

0

(p) = 0.) Then, using some extremely shemati notation, the expansion of

(2.35) to seond order is

(g

0

)

p

+ (�

0

g

0

)

p

x

0

+ (�

0

�

0

g

0

)

p

x

0

x

0

=

 

�x

�x

0

�x

�x

0

g

!

p

+

 

�x

�x

0

�

2

x

�x

0

�x

0

g +

�x

�x

0

�x

�x

0

�

0

g

!

p

x

0

+

 

�x

�x

0

�

3

x

�x

0

�x

0

�x

0

g +

�

2

x

�x

0

�x

0

�

2

x

�x

0

�x

0

g +

�x

�x

0

�

2

x

�x

0

�x

0

�

0

g +

�x

�x

0

�x

�x

0

�

0

�

0

g

!

p

x

0

x

0

:(2.37)

We an set terms of equal order in x

0

on eah side equal to eah other. Therefore, the

omponents g

�

0

�

0

(p), 10 numbers in all (to desribe a symmetri two-index tensor), are

determined by the matrix (�x

�

=�x

�

0

)

p

. This is a 4 � 4 matrix with no onstraints; thus,

16 numbers we are free to hoose. Clearly this is enough freedom to put the 10 numbers of

g

�

0

�

0

(p) into anonial form, at least as far as having enough degrees of freedom is onerned.
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(In fat there are some limitations | if you go through the proedure arefully, you �nd

for example that you annot hange the signature and rank.) The six remaining degrees of

freedom an be interpreted as exatly the six parameters of the Lorentz group; we know that

these leave the anonial form unhanged. At �rst order we have the derivatives �

�

0

g

�

0

�

0

(p),

four derivatives of ten omponents for a total of 40 numbers. But looking at the right hand

side of (2.37) we see that we now have the additional freedom to hoose (�

2

x

�

=�x

�

0

1

�x

�

0

2

)

p

. In

this set of numbers there are 10 independent hoies of the indies �

0

1

and �

0

2

(it's symmetri,

sine partial derivatives ommute) and four hoies of �, for a total of 40 degrees of freedom.

This is preisely the amount of hoie we need to determine all of the �rst derivatives of the

metri, whih we an therefore set to zero. At seond order, however, we are onerned with

�

�

0

�

�

0

g

�

0

�

0

(p); this is symmetri in �

0

and �

0

as well as �

0

and �

0

, for a total of 10� 10 = 100

numbers. Our ability to make additional hoies is ontained in (�

3

x

�

=�x

�

0

1

�x

�

0

2

�x

�

0

3

)

p

.

This is symmetri in the three lower indies, whih gives 20 possibilities, times four for the

upper index gives us 80 degrees of freedom | 20 fewer than we require to set the seond

derivatives of the metri to zero. So in fat we annot make the seond derivatives vanish;

the deviation from atness must therefore be measured by the 20 oordinate-independent

degrees of freedom representing the seond derivatives of the metri tensor �eld. We will

see later how this omes about, when we haraterize urvature using the Riemann tensor,

whih will turn out to have 20 independent omponents.

The �nal hange we have to make to our tensor knowledge now that we have dropped

the assumption of at spae has to do with the Levi-Civita tensor, �

�

1

�

2

����

n

. Remember that

the at-spae version of this objet, whih we will now denote by ~�

�

1

�

2

����

n

, was de�ned as

~�

�

1

�

2

����

n

=

8

>

<

>

:

+1 if �

1

�

2

� � ��

n

is an even permutation of 01 � � � (n� 1) ;

�1 if �

1

�

2

� � � �

n

is an odd permutation of 01 � � � (n� 1) ;

0 otherwise :

(2.38)

We will now de�ne the Levi-Civita symbol to be exatly this ~�

�

1

�

2

����

n

| that is, an objet

with n indies whih has the omponents spei�ed above in any oordinate system. This is

alled a \symbol," of ourse, beause it is not a tensor; it is de�ned not to hange under

oordinate transformations. We an relate its behavior to that of an ordinary tensor by �rst

noting that, given some n� n matrixM

�

�

0

, the determinant jM j obeys

~�

�

0

1

�

0

2

����

0

n

jM j = ~�

�

1

�

2

����

n

M

�

1

�

0

1

M

�

2

�

0

2

� � �M

�

n

�

0

n

: (2.39)

This is just a true fat about the determinant whih you an �nd in a suÆiently enlightened

linear algebra book. If follows that, setting M

�

�

0

= �x

�

=�x

�

0

, we have

~�

�

0

1

�

0

2

����

0

n

=

�

�

�

�

�

�x

�

0

�x

�

�

�

�

�

�

~�

�

1

�

2

����

n

�x

�

1

�x

�

0

1

�x

�

2

�x

�

0

2

� � �

�x

�

n

�x

�

0

n

: (2.40)
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This is lose to the tensor transformation law, exept for the determinant out front. Objets

whih transform in this way are known as tensor densities. Another example is given by

the determinant of the metri, g = jg

��

j. It's easy to hek (by taking the determinant of

both sides of (2.35)) that under a oordinate transformation we get

g(x

�

0

) =

�

�

�

�

�

�x

�

0

�x

�

�

�

�

�

�

�2

g(x

�

) : (2.41)

Therefore g is also not a tensor; it transforms in a way similar to the Levi-Civita symbol,

exept that the Jaobian is raised to the �2 power. The power to whih the Jaobian is

raised is known as the weight of the tensor density; the Levi-Civita symbol is a density of

weight 1, while g is a (salar) density of weight �2.

However, we don't like tensor densities, we like tensors. There is a simple way to onvert

a density into an honest tensor | multiply by jgj

w=2

, where w is the weight of the density

(the absolute value signs are there beause g < 0 for Lorentz metris). The result will

transform aording to the tensor transformation law. Therefore, for example, we an de�ne

the Levi-Civita tensor as

�

�

1

�

2

����

n

=

q

jgj ~�

�

1

�

2

����

n

: (2.42)

It is this tensor whih is used in the de�nition of the Hodge dual, (1.87), whih is otherwise

unhanged when generalized to arbitrary manifolds. Sine this is a real tensor, we an raise

indies, et. Sometimes people de�ne a version of the Levi-Civita symbol with upper indies,

~�

�

1

�

2

����

n

, whose omponents are numerially equal to the symbol with lower indies. This

turns out to be a density of weight �1, and is related to the tensor with upper indies by

�

�

1

�

2

����

n

= sgn(g)

1

q

jgj

~�

�

1

�

2

����

n

: (2.43)

As an aside, we should ome lean and admit that, even with the fator of

q

jgj, the

Levi-Civita tensor is in some sense not a true tensor, beause on some manifolds it annot

be globally de�ned. Those on whih it an be de�ned are alled orientable, and we will

deal exlusively with orientable manifolds in this ourse. An example of a non-orientable

manifold is the M�obius strip; see Shutz's Geometrial Methods in Mathematial Physis

(or a similar text) for a disussion.

One �nal appearane of tensor densities is in integration on manifolds. We will not do this

subjet justie, but at least a asual glane is neessary. You have probably been exposed

to the fat that in ordinary alulus on R

n

the volume element d

n

x piks up a fator of the

Jaobian under hange of oordinates:

d

n

x

0

=

�

�

�

�

�

�x

�

0

�x

�

�

�

�

�

�

d

n

x : (2.44)
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There is atually a beautiful explanation of this formula from the point of view of di�erential

forms, whih arises from the following fat: on an n-dimensional manifold, the integrand is

properly understood as an n-form. The naive volume element d

n

x is itself a density rather

than an n-form, but there is no diÆulty in using it to onstrut a real n-form. To see how

this works, we should make the identi�ation

d

n

x$ dx

0

^ � � � ^ dx

n�1

: (2.45)

The expression on the right hand side an be misleading, beause it looks like a tensor (an

n-form, atually) but is really a density. Certainly if we have two funtions f and g on M ,

then df and dg are one-forms, and df ^ dg is a two-form. But we would like to interpret

the right hand side of (2.45) as a oordinate-dependent objet whih, in the x

�

oordinate

system, ats like dx

0

^ � � � ^ dx

n�1

. This sounds triky, but in fat it's just an ambiguity of

notation, and in pratie we will just use the shorthand notation \d

n

x".

To justify this song and dane, let's see how (2.45) hanges under oordinate transfor-

mations. First notie that the de�nition of the wedge produt allows us to write

dx

0

^ � � � ^ dx

n�1

=

1

n!

~�

�

1

����

n

dx

�

1

^ � � � ^ dx

�

n

; (2.46)

sine both the wedge produt and the Levi-Civita symbol are ompletely antisymmetri. Un-

der a oordinate transformation ~�

�

1

����

n

stays the same while the one-forms hange aording

to (2.16), leading to

~�

�

1

����

n

dx

�

1

^ � � � ^ dx

�

n

= ~�

�

1

����

n

�x

�

1

�x

�

0

1

� � �

�x

�

n

�x

�

0

n

dx

�

0

1

^ � � � ^ dx

�

0

n

=

�

�

�

�

�

�x

�

�x

�

0

�

�

�

�

�

~�

�

0

1

����

0

n

dx

�

0

1

^ � � � ^ dx

�

0

n

: (2.47)

Multiplying by the Jaobian on both sides reovers (2.44).

It is lear that the naive volume element d

n

x transforms as a density, not a tensor, but

it is straightforward to onstrut an invariant volume element by multiplying by

q

jgj:

q

jg

0

jdx

0

0

^ � � � ^ dx

(n�1)

0

=

q

jgjdx

0

^ � � � ^ dx

n�1

; (2.48)

whih is of ourse just (n!)

�1

�

�

1

����

n

dx

�

1

^ � � � ^ dx

�

n

. In the interest of simpliity we will

usually write the volume element as

q

jgj d

n

x, rather than as the expliit wedge produt

q

jgjdx

0

^ � � � ^ dx

n�1

; it will be enough to keep in mind that it's supposed to be an n-form.

As a �nal aside to �nish this setion, let's onsider one of the most elegant and powerful

theorems of di�erential geometry: Stokes's theorem. This theorem is the generalization of

the fundamental theorem of alulus,

R

a

b

dx = a � b. Imagine that we have an n-manifold
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M with boundary �M , and an (n� 1)-form ! on M . (We haven't disussed manifolds with

boundaries, but the idea is obvious; M ould for instane be the interior of an (n � 1)-

dimensional losed surfae �M .) Then d! is an n-form, whih an be integrated over M ,

while ! itself an be integrated over �M . Stokes's theorem is then

Z

M

d! =

Z

�M

! : (2.49)

You an onvine yourself that di�erent speial ases of this theorem inlude not only the

fundamental theorem of alulus, but also the theorems of Green, Gauss, and Stokes, familiar

from vetor alulus in three dimensions.
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3 Curvature

In our disussion of manifolds, it beame lear that there were various notions we ould talk

about as soon as the manifold was de�ned; we ould de�ne funtions, take their derivatives,

onsider parameterized paths, set up tensors, and so on. Other onepts, suh as the volume

of a region or the length of a path, required some additional piee of struture, namely the

introdution of a metri. It would be natural to think of the notion of \urvature", whih we

have already used informally, is something that depends on the metri. Atually this turns

out to be not quite true, or at least inomplete. In fat there is one additional struture

we need to introdue | a \onnetion" | whih is haraterized by the urvature. We will

show how the existene of a metri implies a ertain onnetion, whose urvature may be

thought of as that of the metri.

The onnetion beomes neessary when we attempt to address the problem of the partial

derivative not being a good tensor operator. What we would like is a ovariant derivative;

that is, an operator whih redues to the partial derivative in at spae with Cartesian

oordinates, but transforms as a tensor on an arbitrary manifold. It is onventional to spend

a ertain amount of time motivating the introdution of a ovariant derivative, but in fat

the need is obvious; equations suh as �

�

T

��

= 0 are going to have to be generalized to

urved spae somehow. So let's agree that a ovariant derivative would be a good thing to

have, and go about setting it up.

In at spae in Cartesian oordinates, the partial derivative operator �

�

is a map from

(k; l) tensor �elds to (k; l+1) tensor �elds, whih ats linearly on its arguments and obeys the

Leibniz rule on tensor produts. All of this ontinues to be true in the more general situation

we would now like to onsider, but the map provided by the partial derivative depends on the

oordinate system used. We would therefore like to de�ne a ovariant derivative operator

r to perform the funtions of the partial derivative, but in a way independent of oordinates.

We therefore require that r be a map from (k; l) tensor �elds to (k; l+1) tensor �elds whih

has these two properties:

1. linearity: r(T + S) = rT +rS ;

2. Leibniz (produt) rule: r(T 
 S) = (rT )
 S + T 
 (rS) .

If r is going to obey the Leibniz rule, it an always be written as the partial derivative

plus some linear transformation. That is, to take the ovariant derivative we �rst take the

partial derivative, and then apply a orretion to make the result ovariant. (We aren't going

to prove this reasonable-sounding statement, but Wald goes into detail if you are interested.)

55



3 CURVATURE 56

Let's onsider what this means for the ovariant derivative of a vetor V

�

. It means that, for

eah diretion �, the ovariant derivative r

�

will be given by the partial derivative �

�

plus

a orretion spei�ed by a matrix (�

�

)

�

�

(an n� n matrix, where n is the dimensionality of

the manifold, for eah �). In fat the parentheses are usually dropped and we write these

matries, known as the onnetion oeÆients, with haphazard index plaement as �

�

��

.

We therefore have

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

: (3.1)

Notie that in the seond term the index originally on V has moved to the �, and a new index

is summed over. If this is the expression for the ovariant derivative of a vetor in terms of

the partial derivative, we should be able to determine the transformation properties of �

�

��

by demanding that the left hand side be a (1; 1) tensor. That is, we want the transformation

law to be

r

�

0

V

�

0

=

�x

�

�x

�

0

�x

�

0

�x

�

r

�

V

�

: (3.2)

Let's look at the left side �rst; we an expand it using (3.1) and then transform the parts

that we understand:

r

�

0

V

�

0

= �

�

0

V

�

0

+ �

�

0

�

0

�

0

V

�

0

=

�x

�

�x

�

0

�x

�

0

�x

�

�

�

V

�

+

�x

�

�x

�

0

V

�

�

�x

�

�x

�

0

�x

�

+ �

�

0

�

0

�

0

�x

�

0

�x

�

V

�

: (3.3)

The right side, meanwhile, an likewise be expanded:

�x

�

�x

�

0

�x

�

0

�x

�

r

�

V

�

=

�x

�

�x

�

0

�x

�

0

�x

�

�

�

V

�

+

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

V

�

: (3.4)

These last two expressions are to be equated; the �rst terms in eah are idential and therefore

anel, so we have

�

�

0

�

0

�

0

�x

�

0

�x

�

V

�

+

�x

�

�x

�

0

V

�

�

�x

�

�x

�

0

�x

�

=

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

V

�

; (3.5)

where we have hanged a dummy index from � to �. This equation must be true for any

vetor V

�

, so we an eliminate that on both sides. Then the onnetion oeÆients in the

primed oordinates may be isolated by multiplying by �x

�

=�x

�

0

. The result is

�

�

0

�

0

�

0

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

�

�x

�

�x

�

0

�x

�

�x

�

0

�

2

x

�

0

�x

�

�x

�

: (3.6)

This is not, of ourse, the tensor transformation law; the seond term on the right spoils it.

That's okay, beause the onnetion oeÆients are not the omponents of a tensor. They

are purposefully onstruted to be non-tensorial, but in suh a way that the ombination

(3.1) transforms as a tensor | the extra terms in the transformation of the partials and
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the �'s exatly anel. This is why we are not so areful about index plaement on the

onnetion oeÆients; they are not a tensor, and therefore you should try not to raise and

lower their indies.

What about the ovariant derivatives of other sorts of tensors? By similar reasoning to

that used for vetors, the ovariant derivative of a one-form an also be expressed as a partial

derivative plus some linear transformation. But there is no reason as yet that the matries

representing this transformation should be related to the oeÆients �

�

��

. In general we

ould write something like

r

�

!

�

= �

�

!

�

+

e

�

�

��

!

�

; (3.7)

where

e

�

�

��

is a new set of matries for eah �. (Pay attention to where all of the various

indies go.) It is straightforward to derive that the transformation properties of

e

� must be

the same as those of �, but otherwise no relationship has been established. To do so, we

need to introdue two new properties that we would like our ovariant derivative to have (in

addition to the two above):

3. ommutes with ontrations: r

�

(T

�

��

) = (rT )

�

�

��

,

4. redues to the partial derivative on salars: r

�

� = �

�

� .

There is no way to \derive" these properties; we are simply demanding that they be true as

part of the de�nition of a ovariant derivative.

Let's see what these new properties imply. Given some one-form �eld !

�

and vetor �eld

V

�

, we an take the ovariant derivative of the salar de�ned by !

�

V

�

to get

r

�

(!

�

V

�

) = (r

�

!

�

)V

�

+ !

�

(r

�

V

�

)

= (�

�

!

�

)V

�

+

e

�

�

��

!

�

V

�

+ !

�

(�

�

V

�

) + !

�

�

�

��

V

�

: (3.8)

But sine !

�

V

�

is a salar, this must also be given by the partial derivative:

r

�

(!

�

V

�

) = �

�

(!

�

V

�

)

= (�

�

!

�

)V

�

+ !

�

(�

�

V

�

) : (3.9)

This an only be true if the terms in (3.8) with onnetion oeÆients anel eah other;

that is, rearranging dummy indies, we must have

0 =

e

�

�

��

!

�

V

�

+ �

�

��

!

�

V

�

: (3.10)

But both !

�

and V

�

are ompletely arbitrary, so

e

�

�

��

= ��

�

��

: (3.11)
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The two extra onditions we have imposed therefore allow us to express the ovariant deriva-

tive of a one-form using the same onnetion oeÆients as were used for the vetor, but

now with a minus sign (and indies mathed up somewhat di�erently):

r

�

!

�

= �

�

!

�

� �

�

��

!

�

: (3.12)

It should ome as no surprise that the onnetion oeÆients enode all of the information

neessary to take the ovariant derivative of a tensor of arbitrary rank. The formula is quite

straightforward; for eah upper index you introdue a term with a single +�, and for eah

lower index a term with a single ��:

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

= �

�

T

�

1

�

2

����

k

�

1

�

2

����

l

+�

�

1

��

T

��

2

����

k

�

1

�

2

����

l

+ �

�

2

��

T

�

1

�����

k

�

1

�

2

����

l

+ � � �

��

�

��

1

T

�

1

�

2

����

k

��

2

����

l

� �

�

��

2

T

�

1

�

2

����

k

�

1

�����

l

� � � � : (3.13)

This is the general expression for the ovariant derivative. You an hek it yourself; it

omes from the set of axioms we have established, and the usual requirements that tensors

of various sorts be oordinate-independent entities. Sometimes an alternative notation is

used; just as ommas are used for partial derivatives, semiolons are used for ovariant ones:

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

� T

�

1

�

2

����

k

�

1

�

2

����

l

;�

: (3.14)

One again, I'm not a big fan of this notation.

To de�ne a ovariant derivative, then, we need to put a \onnetion" on our manifold,

whih is spei�ed in some oordinate system by a set of oeÆients �

�

��

(n

3

= 64 independent

omponents in n = 4 dimensions) whih transform aording to (3.6). (The name \onne-

tion" omes from the fat that it is used to transport vetors from one tangent spae to

another, as we will soon see.) There are evidently a large number of onnetions we ould

de�ne on any manifold, and eah of them implies a distint notion of ovariant di�erentia-

tion. In general relativity this freedom is not a big onern, beause it turns out that every

metri de�nes a unique onnetion, whih is the one used in GR. Let's see how that works.

The �rst thing to notie is that the di�erene of two onnetions is a (1; 2) tensor. If

we have two sets of onnetion oeÆients, �

�

��

and

b

�

�

��

, their di�erene S

��

�

= �

�

��

�

b

�

�

��

(notie index plaement) transforms as

S

�

0

�

0

�

0

= �

�

0

�

0

�

0

�

b

�

�

0

�

0

�

0

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

�

�x

�

�x

�

0

�x

�

�x

�

0

�

2

x

�

0

�x

�

�x

�

�

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

b

�

�

��

+

�x

�

�x

�

0

�x

�

�x

�

0

�

2

x

�

0

�x

�

�x

�

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

(�

�

��

�

b

�

�

��

)

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

S

��

�

: (3.15)
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This is just the tensor transormation law, so S

��

�

is indeed a tensor. This implies that any

set of onnetions an be expressed as some �duial onnetion plus a tensorial orretion.

Next notie that, given a onnetion spei�ed by �

�

��

, we an immediately form another

onnetion simply by permuting the lower indies. That is, the set of oeÆients �

�

��

will

also transform aording to (3.6) (sine the partial derivatives appearing in the last term

an be ommuted), so they determine a distint onnetion. There is thus a tensor we an

assoiate with any given onnetion, known as the torsion tensor, de�ned by

T

��

�

= �

�

��

� �

�

��

= 2�

�

[��℄

: (3.16)

It is lear that the torsion is antisymmetri its lower indies, and a onnetion whih is

symmetri in its lower indies is known as \torsion-free."

We an now de�ne a unique onnetion on a manifold with a metri g

��

by introduing

two additional properties:

� torsion-free: �

�

��

= �

�

(��)

.

� metri ompatibility: r

�

g

��

= 0.

A onnetion is metri ompatible if the ovariant derivative of the metri with respet to

that onnetion is everywhere zero. This implies a ouple of nie properties. First, it's easy

to show that the inverse metri also has zero ovariant derivative,

r

�

g

��

= 0 : (3.17)

Seond, a metri-ompatible ovariant derivative ommutes with raising and lowering of

indies. Thus, for some vetor �eld V

�

,

g

��

r

�

V

�

= r

�

(g

��

V

�

) = r

�

V

�

: (3.18)

With non-metri-ompatible onnetions one must be very areful about index plaement

when taking a ovariant derivative.

Our laim is therefore that there is exatly one torsion-free onnetion on a given manifold

whih is ompatible with some given metri on that manifold. We do not want to make these

two requirements part of the de�nition of a ovariant derivative; they simply single out one

of the many possible ones.

We an demonstrate both existene and uniqueness by deriving a manifestly unique

expression for the onnetion oeÆients in terms of the metri. To aomplish this, we

expand out the equation of metri ompatibility for three di�erent permutations of the

indies:

r

�

g

��

= �

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0
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r

�

g

��

= �

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0

r

�

g

��

= �

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0 : (3.19)

We subtrat the seond and third of these from the �rst, and use the symmetry of the

onnetion to obtain

�

�

g

��

� �

�

g

��

� �

�

g

��

+ 2�

�

��

g

��

= 0 : (3.20)

It is straightforward to solve this for the onnetion by multiplying by g

��

. The result is

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) : (3.21)

This is one of the most important formulas in this subjet; ommit it to memory. Of ourse,

we have only proved that if a metri-ompatible and torsion-free onnetion exists, it must

be of the form (3.21); you an hek for yourself (for those of you without enough tedious

omputation in your lives) that the right hand side of (3.21) transforms like a onnetion.

This onnetion we have derived from the metri is the one on whih onventional general

relativity is based (although we will keep an open mind for a while longer). It is known

by di�erent names: sometimes the Christo�el onnetion, sometimes the Levi-Civita

onnetion, sometimes the Riemannian onnetion. The assoiated onnetion oeÆients

are sometimes alled Christo�el symbols and written as

n

�

��

o

; we will sometimes all

them Christo�el symbols, but we won't use the funny notation. The study of manifolds with

metris and their assoiated onnetions is alled \Riemannian geometry." As far as I an

tell the study of more general onnetions an be traed bak to Cartan, but I've never heard

it alled \Cartanian geometry."

Before putting our ovariant derivatives to work, we should mention some misellaneous

properties. First, let's emphasize again that the onnetion does not have to be onstruted

from the metri. In ordinary at spae there is an impliit onnetion we use all the time

| the Christo�el onnetion onstruted from the at metri. But we ould, if we hose,

use a di�erent onnetion, while keeping the metri at. Also notie that the oeÆients

of the Christo�el onnetion in at spae will vanish in Cartesian oordinates, but not in

urvilinear oordinate systems. Consider for example the plane in polar oordinates, with

metri

ds

2

= dr

2

+ r

2

d�

2

: (3.22)

The nonzero omponents of the inverse metri are readily found to be g

rr

= 1 and g

��

= r

�2

.

(Notie that we use r and � as indies in an obvious notation.) We an ompute a typial

onnetion oeÆient:

�

r

rr

=

1

2

g

r�

(�

r

g

r�

+ �

r

g

�r

� �

�

g

rr

)

=

1

2

g

rr

(�

r

g

rr

+ �

r

g

rr

� �

r

g

rr

)
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+

1

2

g

r�

(�

r

g

r�

+ �

r

g

�r

� �

�

g

rr

)

=

1

2

(1)(0 + 0� 0) +

1

2

(0)(0 + 0� 0)

= 0 : (3.23)

Sadly, it vanishes. But not all of them do:

�

r

��

=

1

2

g

r�

(�

�

g

��

+ �

�

g

��

� �

�

g

��

)

=

1

2

g

rr

(�

�

g

�r

+ �

�

g

r�

� �

r

g

��

)

=

1

2

(1)(0 + 0 � 2r)

= �r : (3.24)

Continuing to turn the rank, we eventually �nd

�

r

�r

= �

r

r�

= 0

�

�

rr

= 0

�

�

r�

= �

�

�r

=

1

r

�

�

��

= 0 : (3.25)

The existene of nonvanishing onnetion oeÆients in urvilinear oordinate systems is

the ultimate ause of the formulas for the divergene and so on that you �nd in books on

eletriity and magnetism.

Contrariwise, even in a urved spae it is still possible to make the Christo�el symbols

vanish at any one point. This is just beause, as we saw in the last setion, we an always

make the �rst derivative of the metri vanish at a point; so by (3.21) the onnetion oeÆ-

ients derived from this metri will also vanish. Of ourse this an only be established at a

point, not in some neighborhood of the point.

Another useful property is that the formula for the divergene of a vetor (with respet

to the Christo�el onnetion) has a simpli�ed form. The ovariant divergene of V

�

is given

by

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

: (3.26)

It's easy to show (see pp. 106-108 of Weinberg) that the Christo�el onnetion satis�es

�

�

��

=

1

q

jgj

�

�

q

jgj ; (3.27)

and we therefore obtain

r

�

V

�

=

1

q

jgj

�

�

(

q

jgjV

�

) : (3.28)
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There are also formulas for the divergenes of higher-rank tensors, but they are generally

not suh a great simpli�ation.

As the last fatoid we should mention about onnetions, let us emphasize (one more)

that the exterior derivative is a well-de�ned tensor in the absene of any onnetion. The

reason this needs to be emphasized is that, if you happen to be using a symmetri (torsion-

free) onnetion, the exterior derivative (de�ned to be the antisymmetrized partial derivative)

happens to be equal to the antisymmetrized ovariant derivative:

r

[�

!

�℄

= �

[�

!

�℄

� �

�

[��℄

!

�

= �

[�

!

�℄

: (3.29)

This has led some misfortunate souls to fret about the \ambiguity" of the exterior derivative

in spaes with torsion, where the above simpli�ation does not our. There is no ambiguity:

the exterior derivative does not involve the onnetion, no matter what onnetion you

happen to be using, and therefore the torsion never enters the formula for the exterior

derivative of anything.

Before moving on, let's review the proess by whih we have been adding strutures to

our mathematial onstruts. We started with the basi notion of a set, whih you were

presumed to know (informally, if not rigorously). We introdued the onept of open subsets

of our set; this is equivalent to introduing a topology, and promoted the set to a topologial

spae. Then by demanding that eah open set look like a region of R

n

(with n the same for

eah set) and that the oordinate harts be smoothly sewn together, the topologial spae

beame a manifold. A manifold is simultaneously a very exible and powerful struture,

and omes equipped naturally with a tangent bundle, tensor bundles of various ranks, the

ability to take exterior derivatives, and so forth. We then proeeded to put a metri on

the manifold, resulting in a manifold with metri (or sometimes \Riemannian manifold").

Independently of the metri we found we ould introdue a onnetion, allowing us to take

ovariant derivatives. One we have a metri, however, there is automatially a unique

torsion-free metri-ompatible onnetion. (In priniple there is nothing to stop us from

introduing more than one onnetion, or more than one metri, on any given manifold.)

The situation is thus as portrayed in the diagram on the next page.
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introduce a topology

(open sets)

(automatically

has a

connection)

space
topological

manifold

manifold
with

connection

Riemannian 
manifold

locally like      

introduce a connection

introduce a metric

R
n

set

Having set up the mahinery of onnetions, the �rst thing we will do is disuss parallel

transport. Reall that in at spae it was unneessary to be very areful about the fat

that vetors were elements of tangent spaes de�ned at individual points; it is atually very

natural to ompare vetors at di�erent points (where by \ompare" we mean add, subtrat,

take the dot produt, et.). The reason why it is natural is beause it makes sense, in at

spae, to \move a vetor from one point to another while keeping it onstant." Then one

we get the vetor from one point to another we an do the usual operations allowed in a

vetor spae.

q

p

keep vector
constant

The onept of moving a vetor along a path, keeping onstant all the while, is known

as parallel transport. As we shall see, parallel transport is de�ned whenever we have a
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onnetion; the intuitive manipulation of vetors in at spae makes impliit use of the

Christo�el onnetion on this spae. The ruial di�erene between at and urved spaes is

that, in a urved spae, the result of parallel transporting a vetor from one point to another

will depend on the path taken between the points. Without yet assembling the omplete

mehanism of parallel transport, we an use our intuition about the two-sphere to see that

this is the ase. Start with a vetor on the equator, pointing along a line of onstant

longitude. Parallel transport it up to the north pole along a line of longitude in the obvious

way. Then take the original vetor, parallel transport it along the equator by an angle �, and

then move it up to the north pole as before. It is lear that the vetor, parallel transported

along two paths, arrived at the same destination with two di�erent values (rotated by �).

It therefore appears as if there is no natural way to uniquely move a vetor from one

tangent spae to another; we an always parallel transport it, but the result depends on the

path, and there is no natural hoie of whih path to take. Unlike some of the problems we

have enountered, there is no solution to this one | we simply must learn to live with the

fat that two vetors an only be ompared in a natural way if they are elements of the same

tangent spae. For example, two partiles passing by eah other have a well-de�ned relative

veloity (whih annot be greater than the speed of light). But two partiles at di�erent

points on a urved manifold do not have any well-de�ned notion of relative veloity | the

onept simply makes no sense. Of ourse, in ertain speial situations it is still useful to talk

as if it did make sense, but it is neessary to understand that oasional usefulness is not a

substitute for rigorous de�nition. In osmology, for example, the light from distant galaxies

is redshifted with respet to the frequenies we would observe from a nearby stationary

soure. Sine this phenomenon bears suh a lose resemblane to the onventional Doppler

e�et due to relative motion, it is very tempting to say that the galaxies are \reeding away

from us" at a speed de�ned by their redshift. At a rigorous level this is nonsense, what

Wittgenstein would all a \grammatial mistake" | the galaxies are not reeding, sine the

notion of their veloity with respet to us is not well-de�ned. What is atually happening

is that the metri of spaetime between us and the galaxies has hanged (the universe has
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expanded) along the path of the photon from here to there, leading to an inrease in the

wavelength of the light. As an example of how you an go wrong, naive appliation of the

Doppler formula to the redshift of galaxies implies that some of them are reeding faster than

light, in apparent ontradition with relativity. The resolution of this apparent paradox is

simply that the very notion of their reession should not be taken literally.

Enough about what we annot do; let's see what we an. Parallel transport is supposed to

be the urved-spae generalization of the onept of \keeping the vetor onstant" as we move

it along a path; similarly for a tensor of arbitrary rank. Given a urve x

�

(�), the requirement

of onstany of a tensor T along this urve in at spae is simply

dT

d�

=

dx

�

d�

�T

�x

�

= 0. We

therefore de�ne the ovariant derivative along the path to be given by an operator

D

d�

=

dx

�

d�

r

�

: (3.30)

We then de�ne parallel transport of the tensor T along the path x

�

(�) to be the require-

ment that, along the path,

�

D

d�

T

�

�

1

�

2

����

k

�

1

�

2

����

l

�

dx

�

d�

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

= 0 : (3.31)

This is a well-de�ned tensor equation, sine both the tangent vetor dx

�

=d� and the ovariant

derivative rT are tensors. This is known as the equation of parallel transport. For a

vetor it takes the form

d

d�

V

�

+ �

�

��

dx

�

d�

V

�

= 0 : (3.32)

We an look at the parallel transport equation as a �rst-order di�erential equation de�ning

an initial-value problem: given a tensor at some point along the path, there will be a unique

ontinuation of the tensor to other points along the path suh that the ontinuation solves

(3.31). We say that suh a tensor is parallel transported.

The notion of parallel transport is obviously dependent on the onnetion, and di�erent

onnetions lead to di�erent answers. If the onnetion is metri-ompatible, the metri is

always parallel transported with respet to it:

D

d�

g

��

=

dx

�

d�

r

�

g

��

= 0 : (3.33)

It follows that the inner produt of two parallel-transported vetors is preserved. That is, if

V

�

and W

�

are parallel-transported along a urve x

�

(�), we have

D

d�

(g

��

V

�

W

�

) =

�

D

d�

g

��

�

V

�

W

�

+ g

��

�

D

d�

V

�

�

W

�

+ g

��

V

�

�

D

d�

W

�

�

= 0 : (3.34)

This means that parallel transport with respet to a metri-ompatible onnetion preserves

the norm of vetors, the sense of orthogonality, and so on.
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One thing they don't usually tell you in GR books is that you an write down an expliit

and general solution to the parallel transport equation, although it's somewhat formal. First

notie that for some path  : �! x

�

(�), solving the parallel transport equation for a vetor

V

�

amounts to �nding a matrix P

�

�

(�; �

0

) whih relates the vetor at its initial value V

�

(�

0

)

to its value somewhere later down the path:

V

�

(�) = P

�

�

(�; �

0

)V

�

(�

0

) : (3.35)

Of ourse the matrix P

�

�

(�; �

0

), known as the parallel propagator, depends on the path

 (although it's hard to �nd a notation whih indiates this without making  look like an

index). If we de�ne

A

�

�

(�) = ��

�

��

dx

�

d�

; (3.36)

where the quantities on the right hand side are evaluated at x

�

(�), then the parallel transport

equation beomes

d

d�

V

�

= A

�

�

V

�

: (3.37)

Sine the parallel propagator must work for any vetor, substituting (3.35) into (3.37) shows

that P

�

�

(�; �

0

) also obeys this equation:

d

d�

P

�

�

(�; �

0

) = A

�

�

(�)P

�

�

(�; �

0

) : (3.38)

To solve this equation, �rst integrate both sides:

P

�

�

(�; �

0

) = Æ

�

�

+

Z

�

�

0

A

�

�

(�)P

�

�

(�; �

0

) d� : (3.39)

The Kroneker delta, it is easy to see, provides the orret normalization for � = �

0

.

We an solve (3.39) by iteration, taking the right hand side and plugging it into itself

repeatedly, giving

P

�

�

(�; �

0

) = Æ

�

�

+

Z

�

�

0

A

�

�

(�) d� +

Z

�

�

0

Z

�

�

0

A

�

�

(�)A

�

�

(�

0

) d�

0

d� + � � � : (3.40)

The nth term in this series is an integral over an n-dimensional right triangle, or n-simplex.



3 CURVATURE 67

Z
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�

0

Z

�
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�

0

A(�

2

)A(�

1

) d�

1

d�

2

Z

�

�

0

Z

�

3

�

0

Z

�

2

�

0

A(�

3

)A(�

2

)A(�

1

) d

3

�

η

η

η

1

3

2

η

η

2

1

η
1

It would simplify things if we ould onsider suh an integral to be over an n-ube

instead of an n-simplex; is there some way to do this? There are n! suh simplies in eah

ube, so we would have to multiply by 1=n! to ompensate for this extra volume. But we

also want to get the integrand right; using matrix notation, the integrand at nth order

is A(�

n

)A(�

n�1

) � � �A(�

1

), but with the speial property that �

n

� �

n�1

� � � � � �

1

. We

therefore de�ne the path-ordering symbol, P, to ensure that this ondition holds. In

other words, the expression

P[A(�

n

)A(�

n�1

) � � �A(�

1

)℄ (3.41)

stands for the produt of the n matries A(�

i

), ordered in suh a way that the largest value

of �

i

is on the left, and eah subsequent value of �

i

is less than or equal to the previous one.

We then an express the nth-order term in (3.40) as

Z

�

�

0

Z

�

n

�

0

� � �

Z

�

2

�

0

A(�

n

)A(�

n�1

) � � �A(�

1

) d

n

�

=

1

n!

Z

�

�

0

Z

�

�

0

� � �

Z

�

�

0

P[A(�

n

)A(�

n�1

) � � �A(�

1

)℄ d

n

� : (3.42)

This expression ontains no substantive statement about the matries A(�

i

); it is just nota-

tion. But we an now write (3.40) in matrix form as

P (�; �

0

) = 1+

1

X

n=1

1

n!

Z

�

�

0

P[A(�

n

)A(�

n�1

) � � �A(�

1

)℄ d

n

� : (3.43)

This formula is just the series expression for an exponential; we therefore say that the parallel

propagator is given by the path-ordered exponential

P (�; �

0

) = P exp

 

Z

�

�

0

A(�) d�

!

; (3.44)
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where one again this is just notation; the path-ordered exponential is de�ned to be the right

hand side of (3.43). We an write it more expliitly as

P

�

�

(�; �

0

) = P exp

 

�

Z

�

�

0

�

�

��

dx

�

d�

d�

!

: (3.45)

It's nie to have an expliit formula, even if it is rather abstrat. The same kind of ex-

pression appears in quantum �eld theory as \Dyson's Formula," where it arises beause the

Shr�odinger equation for the time-evolution operator has the same form as (3.38).

As an aside, an espeially interesting example of the parallel propagator ours when the

path is a loop, starting and ending at the same point. Then if the onnetion is metri-

ompatible, the resulting matrix will just be a Lorentz transformation on the tangent spae

at the point. This transformation is known as the \holonomy" of the loop. If you know

the holonomy of every possible loop, that turns out to be equivalent to knowing the metri.

This fat has let Ashtekar and his ollaborators to examine general relativity in the \loop

representation," where the fundamental variables are holonomies rather than the expliit

metri. They have made some progress towards quantizing the theory in this approah,

although the jury is still out about how muh further progress an be made.

With parallel transport understood, the next logial step is to disuss geodesis. A

geodesi is the urved-spae generalization of the notion of a \straight line" in Eulidean

spae. We all know what a straight line is: it's the path of shortest distane between

two points. But there is an equally good de�nition | a straight line is a path whih

parallel transports its own tangent vetor. On a manifold with an arbitrary (not neessarily

Christo�el) onnetion, these two onepts do not quite oinide, and we should disuss

them separately.

We'll take the seond de�nition �rst, sine it is omputationally muh more straight-

forward. The tangent vetor to a path x

�

(�) is dx

�

=d�. The ondition that it be parallel

transported is thus

D

d�

dx

�

d�

= 0 ; (3.46)

or alternatively

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

= 0 : (3.47)

This is the geodesi equation, another one whih you should memorize. We an easily

see that it reprodues the usual notion of straight lines if the onnetion oeÆients are the

Christo�el symbols in Eulidean spae; in that ase we an hoose Cartesian oordinates in

whih �

�

��

= 0, and the geodesi equation is just d

2

x

�

=d�

2

= 0, whih is the equation for a

straight line.

That was embarrassingly simple; let's turn to the more nontrivial ase of the shortest

distane de�nition. As we know, there are various subtleties involved in the de�nition of
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distane in a Lorentzian spaetime; for null paths the distane is zero, for timelike paths

it's more onvenient to use the proper time, et. So in the name of simpliity let's do the

alulation just for a timelike path | the resulting equation will turn out to be good for any

path, so we are not losing any generality. We therefore onsider the proper time funtional,

� =

Z

 

�g

��

dx

�

d�

dx

�

d�

!

1=2

d� ; (3.48)

where the integral is over the path. To searh for shortest-distane paths, we will do the

usual alulus of variations treatment to seek extrema of this funtional. (In fat they will

turn out to be urves of maximum proper time.)

We want to onsider the hange in the proper time under in�nitesimal variations of the

path,

x

�

! x

�

+ Æx

�

g

��

! g

��

+ Æx

�

�

�

g

��

: (3.49)

(The seond line omes from Taylor expansion in urved spaetime, whih as you an see

uses the partial derivative, not the ovariant derivative.) Plugging this into (3.48), we get

� + Æ� =

Z

 

�g

��

dx

�

d�

dx

�
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��

dx
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�
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dx

�
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�
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dx

�
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�
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�

d�

d(Æx

�

)
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!#

1=2

d� : (3.50)

Sine Æx

�

is assumed to be small, we an expand the square root of the expression in square

brakets to �nd

Æ� =

Z

 

�g

��

dx

�

d�

dx

�

d�

!

�1=2
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!

d� : (3.51)

It is helpful at this point to hange the parameterization of our urve from �, whih was

arbitrary, to the proper time � itself, using

d� =

 

�g

��

dx

�

d�

dx

�

d�

!

�1=2

d� : (3.52)

We plug this into (3.51) (note: we plug it in for every appearane of d�) to obtain
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=

Z

"

�
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2

�

�
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��

dx
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d�
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d�

+

d
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g

��

dx

�
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!#

Æx

�

d� ; (3.53)

where in the last line we have integrated by parts, avoiding possible boundary ontributions

by demanding that the variation Æx

�

vanish at the endpoints of the path. Sine we are

searhing for stationary points, we want Æ� to vanish for any variation; this implies

�

1

2

�

�

g

��

dx

�

d�

dx

�

d�

+

dx

�

d�

dx

�

d�

�

�

g

��

+ g

��

d

2

x

�

d�

2

= 0 ; (3.54)

where we have used dg

��

=d� = (dx

�

=d� )�

�

g

��

. Some shu�ing of dummy indies reveals

g

��

d

2

x

�

d�

2

+

1

2

(��

�

g

��

+ �

�

g

��

+ �

�

g

��

)

dx

�

d�

dx

�

d�

= 0 ; (3.55)

and multiplying by the inverse metri �nally leads to

d

2

x

�

d�

2

+

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

)

dx

�

d�

dx

�

d�

= 0 : (3.56)

We see that this is preisely the geodesi equation (3.32), but with the spei� hoie of

Christo�el onnetion (3.21). Thus, on a manifold with metri, extremals of the length fun-

tional are urves whih parallel transport their tangent vetor with respet to the Christo�el

onnetion assoiated with that metri. It doesn't matter if there is any other onnetion

de�ned on the same manifold. Of ourse, in GR the Christo�el onnetion is the only one

whih is used, so the two notions are the same.

The primary usefulness of geodesis in general relativity is that they are the paths fol-

lowed by unaelerated partiles. In fat, the geodesi equation an be thought of as the

generalization of Newton's law f = ma for the ase f = 0. It is also possible to introdue

fores by adding terms to the right hand side; in fat, looking bak to the expression (1.103)

for the Lorentz fore in speial relativity, it is tempting to guess that the equation of motion

for a partile of mass m and harge q in general relativity should be

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

=

q

m

F

�

�

dx

�

d�

: (3.57)

We will talk about this more later, but in fat your guess would be orret.

Having boldly derived these expressions, we should say some more areful words about

the parameterization of a geodesi path. When we presented the geodesi equation as the

requirement that the tangent vetor be parallel transported, (3.47), we parameterized our

path with some parameter �, whereas when we found the formula (3.56) for the extremal of

the spaetime interval we wound up with a very spei� parameterization, the proper time.

Of ourse from the form of (3.56) it is lear that a transformation

� ! � = a� + b ; (3.58)
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for some onstants a and b, leaves the equation invariant. Any parameter related to the

proper time in this way is alled an aÆne parameter, and is just as good as the proper

time for parameterizing a geodesi. What was hidden in our derivation of (3.47) was that

the demand that the tangent vetor be parallel transported atually onstrains the parameter-

ization of the urve, spei�ally to one related to the proper time by (3.58). In other words,

if you start at some point and with some initial diretion, and then onstrut a urve by

beginning to walk in that diretion and keeping your tangent vetor parallel transported,

you will not only de�ne a path in the manifold but also (up to linear transformations) de�ne

the parameter along the path.

Of ourse, there is nothing to stop you from using any other parameterization you like,

but then (3.47) will not be satis�ed. More generally you will satisfy an equation of the form

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

= f(�)

dx

�

d�

; (3.59)

for some parameter � and some funtion f(�). Conversely, if (3.59) is satis�ed along a urve

you an always �nd an aÆne parameter �(�) for whih the geodesi equation (3.47) will be

satis�ed.

An important property of geodesis in a spaetime with Lorentzian metri is that the

harater (timelike/null/spaelike) of the geodesi (relative to a metri-ompatible onne-

tion) never hanges. This is simply beause parallel transport preserves inner produts, and

the harater is determined by the inner produt of the tangent vetor with itself. This

is why we were onsistent to onsider purely timelike paths when we derived (3.56); for

spaelike paths we would have derived the same equation, sine the only di�erene is an

overall minus sign in the �nal answer. There are also null geodesis, whih satisfy the same

equation, exept that the proper time annot be used as a parameter (some set of allowed

parameters will exist, related to eah other by linear transformations). You an derive this

fat either from the simple requirement that the tangent vetor be parallel transported, or

by extending the variation of (3.48) to inlude all non-spaelike paths.

Let's now explain the earlier remark that timelike geodesis are maxima of the proper

time. The reason we know this is true is that, given any timelike urve (geodesi or not), we

an approximate it to arbitrary auray by a null urve. To do this all we have to do is to

onsider \jagged" null urves whih follow the timelike one:
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null

timelike

As we inrease the number of sharp orners, the null urve omes loser and loser to the

timelike urve while still having zero path length. Timelike geodesis annot therefore be

urves of minimum proper time, sine they are always in�nitesimally lose to urves of zero

proper time; in fat they maximize the proper time. (This is how you an remember whih

twin in the twin paradox ages more | the one who stays home is basially on a geodesi,

and therefore experienes more proper time.) Of ourse even this is being a little avalier;

atually every time we say \maximize" or \minimize" we should add the modi�er \loally."

It is often the ase that between two points on a manifold there is more than one geodesi.

For instane, on S

2

we an draw a great irle through any two points, and imagine travelling

between them either the short way or the long way around. One of these is obviously longer

than the other, although both are stationary points of the length funtional.

The �nal fat about geodesis before we move on to urvature proper is their use in

mapping the tangent spae at a point p to a loal neighborhood of p. To do this we notie

that any geodesi x

�

(�) whih passes through p an be spei�ed by its behavior at p; let us

hoose the parameter value to be �(p) = 0, and the tangent vetor at p to be

dx

�

d�

(� = 0) = k

�

; (3.60)

for k

�

some vetor at p (some element of T

p

). Then there will be a unique point on the

manifoldM whih lies on this geodesi where the parameter has the value � = 1. We de�ne

the exponential map at p, exp

p

: T

p

!M , via

exp

p

(k

�

) = x

�

(� = 1) ; (3.61)

where x

�

(�) solves the geodesi equation subjet to (3.60). For some set of tangent vetors

k

�

near the zero vetor, this map will be well-de�ned, and in fat invertible. Thus in the
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M

x  (  )

k

T

p

µ

p

λ

λ=1

ν

neighborhood of p given by the range of the map on this set of tangent vetors, the the

tangent vetors themselves de�ne a oordinate system on the manifold. In this oordinate

system, any geodesi through p is expressed trivially as

x

�

(�) = �k

�

; (3.62)

for some appropriate vetor k

�

.

We won't go into detail about the properties of the exponential map, sine in fat we

won't be using it muh, but it's important to emphasize that the range of the map is not

neessarily the whole manifold, and the domain is not neessarily the whole tangent spae.

The range an fail to be all of M simply beause there an be two points whih are not

onneted by any geodesi. (In a Eulidean signature metri this is impossible, but not in

a Lorentzian spaetime.) The domain an fail to be all of T

p

beause a geodesi may run

into a singularity, whih we think of as \the edge of the manifold." Manifolds whih have

suh singularities are known as geodesially inomplete. This is not merely a problem

for areful mathematiians; in fat the \singularity theorems" of Hawking and Penrose state

that, for reasonable matter ontent (no negative energies), spaetimes in general relativity

are almost guaranteed to be geodesially inomplete. As examples, the two most useful

spaetimes in GR | the Shwarzshild solution desribing blak holes and the Friedmann-

Robertson-Walker solutions desribing homogeneous, isotropi osmologies | both feature

important singularities.

Having set up the mahinery of parallel transport and ovariant derivatives, we are at last

prepared to disuss urvature proper. The urvature is quanti�ed by the Riemann tensor,

whih is derived from the onnetion. The idea behind this measure of urvature is that we

know what we mean by \atness" of a onnetion | the onventional (and usually impliit)

Christo�el onnetion assoiated with a Eulidean or Minkowskian metri has a number of

properties whih an be thought of as di�erent manifestations of atness. These inlude the

fat that parallel transport around a losed loop leaves a vetor unhanged, that ovariant

derivatives of tensors ommute, and that initially parallel geodesis remain parallel. As we
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shall see, the Riemann tensor arises when we study how any of these properties are altered

in more general ontexts.

We have already argued, using the two-sphere as an example, that parallel transport

of a vetor around a losed loop in a urved spae will lead to a transformation of the

vetor. The resulting transformation depends on the total urvature enlosed by the loop;

it would be more useful to have a loal desription of the urvature at eah point, whih is

what the Riemann tensor is supposed to provide. One onventional way to introdue the

Riemann tensor, therefore, is to onsider parallel transport around an in�nitesimal loop. We

are not going to do that here, but take a more diret route. (Most of the presentations in

the literature are either sloppy, or orret but very diÆult to follow.) Nevertheless, even

without working through the details, it is possible to see what form the answer should take.

Imagine that we parallel transport a vetor V

�

around a losed loop de�ned by two vetors

A

�

and B

�

:

(0, 0)

B

(  a, 0)

(  a,   b)

(0,   b)δ

ν

A
µ

B
ν

δ

δ
A

µ

δ

The (in�nitesimal) lengths of the sides of the loop are Æa and Æb, respetively. Now, we know

the ation of parallel transport is independent of oordinates, so there should be some tensor

whih tells us how the vetor hanges when it omes bak to its starting point; it will be

a linear transformation on a vetor, and therefore involve one upper and one lower index.

But it will also depend on the two vetors A and B whih de�ne the loop; therefore there

should be two additional lower indies to ontrat with A

�

and B

�

. Furthermore, the tensor

should be antisymmetri in these two indies, sine interhanging the vetors orresponds

to traversing the loop in the opposite diretion, and should give the inverse of the original

answer. (This is onsistent with the fat that the transformation should vanish if A and B

are the same vetor.) We therefore expet that the expression for the hange ÆV

�

experiened

by this vetor when parallel transported around the loop should be of the form

ÆV

�

= (Æa)(Æb)A

�

B

�

R

�

���

V

�

; (3.63)

where R

�

���

is a (1; 3) tensor known as theRiemann tensor (or simply \urvature tensor").
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It is antisymmetri in the last two indies:

R

�

���

= �R

�

���

: (3.64)

(Of ourse, if (3.63) is taken as a de�nition of the Riemann tensor, there is a onvention that

needs to be hosen for the ordering of the indies. There is no agreement at all on what this

onvention should be, so be areful.)

Knowing what we do about parallel transport, we ould very arefully perform the ne-

essary manipulations to see what happens to the vetor under this operation, and the result

would be a formula for the urvature tensor in terms of the onnetion oeÆients. It is muh

quiker, however, to onsider a related operation, the ommutator of two ovariant deriva-

tives. The relationship between this and parallel transport around a loop should be evident;

the ovariant derivative of a tensor in a ertain diretion measures how muh the tensor

hanges relative to what it would have been if it had been parallel transported (sine the

ovariant derivative of a tensor in a diretion along whih it is parallel transported is zero).

The ommutator of two ovariant derivatives, then, measures the di�erene between parallel

transporting the tensor �rst one way and then the other, versus the opposite ordering.

ν

µ

∆
∆

∆

µ

∆

ν

The atual omputation is very straightforward. Considering a vetor �eld V

�

, we take

[r

�

;r

�

℄V

�

= r

�

r

�

V

�

�r

�

r

�

V

�

= �

�

(r

�

V

�

)� �

�

��

r

�

V

�

+ �

�

��

r

�

V

�

� (�$ �)

= �

�

�

�

V

�

+ (�

�

�

�

��

)V

�

+ �

�

��

�

�

V

�

� �

�

��

�

�

V

�

� �

�

��

�

�

��

V

�

+�

�

��

�

�

V

�

+ �

�

��

�

�

��

V

�

� (�$ �)

= (�

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

)V

�

� 2�

�

[��℄

r

�

V

�

: (3.65)

In the last step we have relabeled some dummy indies and eliminated some terms that

anel when antisymmetrized. We reognize that the last term is simply the torsion tensor,

and that the left hand side is manifestly a tensor; therefore the expression in parentheses

must be a tensor itself. We write

[r

�

;r

�

℄V

�

= R

�

���

V

�

� T

��

�

r

�

V

�

; (3.66)
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where the Riemann tensor is identi�ed as

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

: (3.67)

There are a number of things to notie about the derivation of this expression:

� Of ourse we have not demonstrated that (3.67) is atually the same tensor that ap-

peared in (3.63), but in fat it's true (see Wald for a believable if tortuous demonstra-

tion).

� It is perhaps surprising that the ommutator [r

�

;r

�

℄, whih appears to be a di�erential

operator, has an ation on vetor �elds whih (in the absene of torsion, at any rate)

is a simple multipliative transformation. The Riemann tensor measures that part of

the ommutator of ovariant derivatives whih is proportional to the vetor �eld, while

the torsion tensor measures the part whih is proportional to the ovariant derivative

of the vetor �eld; the seond derivative doesn't enter at all.

� Notie that the expression (3.67) is onstruted from non-tensorial elements; you an

hek that the transformation laws all work out to make this partiular ombination a

legitimate tensor.

� The antisymmetry of R

�

���

in its last two indies is immediate from this formula and

its derivation.

� We onstruted the urvature tensor ompletely from the onnetion (no mention of

the metri was made). We were suÆiently areful that the above expression is true

for any onnetion, whether or not it is metri ompatible or torsion free.

� Using what are by now our usual methods, the ation of [r

�

;r

�

℄ an be omputed on

a tensor of arbitrary rank. The answer is

[r

�

;r

�

℄X

�

1

����

k

�

1

����

l

= � T

��

�

r

�

X

�

1

����

k

�

1

����

l

+R

�

1

���

X

��

2

����

k

�

1

����

l

+R

�

2

���

X

�

1

�����

k

�

1

����

l

+ � � �

�R

�

�

1

��

X

�

1

����

k

��

2

����

l

�R

�

�

2

��

X

�

1

����

k

�

1

�����

l

� � � � :(3.68)

A useful notion is that of the ommutator of two vetor �elds X and Y , whih is a third

vetor �eld with omponents

[X;Y ℄

�

= X

�

�

�

Y

�

� Y

�

�

�

X

�

: (3.69)

Both the torsion tensor and the Riemann tensor, thought of as multilinearmaps, have elegant

expressions in terms of the ommutator. Thinking of the torsion as a map from two vetor

�elds to a third vetor �eld, we have

T (X;Y ) = r

X

Y �r

Y

X � [X;Y ℄ ; (3.70)
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and thinking of the Riemann tensor as a map from three vetor �elds to a fourth one, we

have

R(X;Y )Z = r

X

r

Y

Z �r

Y

r

X

Z �r

[X;Y ℄

Z : (3.71)

In these expressions, the notation r

X

refers to the ovariant derivative along the vetor �eld

X; in omponents, r

X

= X

�

r

�

. Note that the two vetors X and Y in (3.71) orrespond

to the two antisymmetri indies in the omponent form of the Riemann tensor. The last

term in (3.71), involving the ommutator [X;Y ℄, vanishes when X and Y are taken to be

the oordinate basis vetor �elds (sine [�

�

; �

�

℄ = 0), whih is why this term did not arise

when we originally took the ommutator of two ovariant derivatives. We will not use this

notation extensively, but you might see it in the literature, so you should be able to deode

it.

Having de�ned the urvature tensor as something whih haraterizes the onnetion, let

us now admit that in GR we are most onerned with the Christo�el onnetion. In this

ase the onnetion is derived from the metri, and the assoiated urvature may be thought

of as that of the metri itself. This identi�ation allows us to �nally make sense of our

informal notion that spaes for whih the metri looks Eulidean or Minkowskian are at.

In fat it works both ways: if the omponents of the metri are onstant in some oordinate

system, the Riemann tensor will vanish, while if the Riemann tensor vanishes we an always

onstrut a oordinate system in whih the metri omponents are onstant.

The �rst of these is easy to show. If we are in some oordinate system suh that �

�

g

��

= 0

(everywhere, not just at a point), then �

�

��

= 0 and �

�

�

�

��

= 0; thus R

�

���

= 0 by (3.67).

But this is a tensor equation, and if it is true in one oordinate system it must be true

in any oordinate system. Therefore, the statement that the Riemann tensor vanishes is a

neessary ondition for it to be possible to �nd oordinates in whih the omponents of g

��

are onstant everywhere.

It is also a suÆient ondition, although we have to work harder to show it. Start by

hoosing Riemann normal oordinates at some point p, so that g

��

= �

��

at p. (Here we

are using �

��

in a generalized sense, as a matrix with either +1 or �1 for eah diagonal

element and zeroes elsewhere. The atual arrangement of the +1's and �1's depends on the

anonial form of the metri, but is irrelevant for the present argument.) Denote the basis

vetors at p by ê

(�)

, with omponents ê

�

(�)

. Then by onstrution we have

g

��

ê

�

(�)

ê

�

(�)

(p) = �

��

: (3.72)

Now let us parallel transport the entire set of basis vetors from p to another point q; the

vanishing of the Riemann tensor ensures that the result will be independent of the path taken

between p and q. Sine parallel transport with respet to a metri ompatible onnetion

preserves inner produts, we must have

g

��

ê

�

(�)

ê

�

(�)

(q) = �

��

: (3.73)
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We therefore have spei�ed a set of vetor �elds whih everywhere de�ne a basis in whih

the metri omponents are onstant. This is ompletely unimpressive; it an be done on any

manifold, regardless of what the urvature is. What we would like to show is that this is

a oordinate basis (whih an only be true if the urvature vanishes). We know that if the

ê

(�)

's are a oordinate basis, their ommutator will vanish:

[ê

(�)

; ê

(�)

℄ = 0 : (3.74)

What we would really like is the onverse: that if the ommutator vanishes we an �nd

oordinates y

�

suh that ê

(�)

=

�

�y

�

. In fat this is a true result, known as Frobenius's

Theorem. It's something of a mess to prove, involving a good deal more mathematial

apparatus than we have bothered to set up. Let's just take it for granted (skeptis an

onsult Shutz's Geometrial Methods book). Thus, we would like to demonstrate (3.74) for

the vetor �elds we have set up. Let's use the expression (3.70) for the torsion:

[ê

(�)

; ê

(�)

℄ = r

ê

(�)

ê

(�)

�r

ê

(�)

ê

(�)

� T (ê

(�)

; ê

(�)

) : (3.75)

The torsion vanishes by hypothesis. The ovariant derivatives will also vanish, given the

method by whih we onstruted our vetor �elds; they were made by parallel transporting

along arbitrary paths. If the �elds are parallel transported along arbitrary paths, they are

ertainly parallel transported along the vetors ê

(�)

, and therefore their ovariant derivatives

in the diretion of these vetors will vanish. Thus (3.70) implies that the ommutator

vanishes, and therefore that we an �nd a oordinate system y

�

for whih these vetor �elds

are the partial derivatives. In this oordinate system the metri will have omponents �

��

,

as desired.

The Riemann tensor, with four indies, naively has n

4

independent omponents in an

n-dimensional spae. In fat the antisymmetry property (3.64) means that there are only

n(n�1)=2 independent values these last two indies an take on, leaving us with n

3

(n�1)=2

independent omponents. When we onsider the Christo�el onnetion, however, there are a

number of other symmetries that redue the independent omponents further. Let's onsider

these now.

The simplest way to derive these additional symmetries is to examine the Riemann tensor

with all lower indies,

R

����

= g

��

R

�

���

: (3.76)

Let us further onsider the omponents of this tensor in Riemann normal oordinates es-

tablished at a point p. Then the Christo�el symbols themselves will vanish, although their

derivatives will not. We therefore have

R

����

= g

��

(�

�

�

�

��

� �

�

�

�

��

)
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=

1

2

g

��

g

��

(�

�

�

�

g

��

+ �

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

+ �

�

�

�

g

��

)

=

1

2

(�

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

+ �

�

�

�

g

��

) : (3.77)

In the seond line we have used �

�

g

��

= 0 in RNC's, and in the third line the fat that

partials ommute. From this expression we an notie immediately two properties of R

����

;

it is antisymmetri in its �rst two indies,

R

����

= �R

����

; (3.78)

and it is invariant under interhange of the �rst pair of indies with the seond:

R

����

= R

����

: (3.79)

With a little more work, whih we leave to your imagination, we an see that the sum of

yli permutations of the last three indies vanishes:

R

����

+R

����

+R

����

= 0 : (3.80)

This last property is equivalent to the vanishing of the antisymmetri part of the last three

indies:

R

�[��� ℄

= 0 : (3.81)

All of these properties have been derived in a speial oordinate system, but they are all

tensor equations; therefore they will be true in any oordinates. Not all of them are inde-

pendent; with some e�ort, you an show that (3.64), (3.78) and (3.81) together imply (3.79).

The logial interdependene of the equations is usually less important than the simple fat

that they are true.

Given these relationships between the di�erent omponents of the Riemann tensor, how

many independent quantities remain? Let's begin with the fats that R

����

is antisymmetri

in the �rst two indies, antisymmetri in the last two indies, and symmetri under inter-

hange of these two pairs. This means that we an think of it as a symmetri matrixR

[��℄[��℄

,

where the pairs �� and �� are thought of as individual indies. An m�m symmetri ma-

trix has m(m + 1)=2 independent omponents, while an n � n antisymmetri matrix has

n(n� 1)=2 independent omponents. We therefore have

1

2

�

1

2

n(n � 1)

� �

1

2

n(n � 1) + 1

�

=

1

8

(n

4

� 2n

3

+ 3n

2

� 2n) (3.82)

independent omponents. We still have to deal with the additional symmetry (3.81). An

immediate onsequene of (3.81) is that the totally antisymmetri part of the Riemann tensor

vanishes,

R

[���� ℄

= 0 : (3.83)
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In fat, this equation plus the other symmetries (3.64), (3.78) and (3.79) are enough to imply

(3.81), as an be easily shown by expanding (3.83) and messing with the resulting terms.

Therefore imposing the additional onstraint of (3.83) is equivalent to imposing (3.81), one

the other symmetries have been aounted for. How many independent restritions does this

represent? Let us imagine deomposing

R

����

= X

����

+R

[���� ℄

: (3.84)

It is easy to see that any totally antisymmetri 4-index tensor is automatially antisymmetri

in its �rst and last indies, and symmetri under interhange of the two pairs. Therefore

these properties are independent restritions on X

����

, unrelated to the requirement (3.83).

Now a totally antisymmetri 4-index tensor has n(n�1)(n�2)(n�3)=4! terms, and therefore

(3.83) redues the number of independent omponents by this amount. We are left with

1

8

(n

4

� 2n

3

+ 3n

2

� 2n) �

1

24

n(n � 1)(n � 2)(n� 3) =

1

12

n

2

(n

2

� 1) (3.85)

independent omponents of the Riemann tensor.

In four dimensions, therefore, the Riemann tensor has 20 independent omponents. (In

one dimension it has none.) These twenty funtions are preisely the 20 degrees of freedom

in the seond derivatives of the metri whih we ould not set to zero by a lever hoie of

oordinates. This should reinfore your on�dene that the Riemann tensor is an appropriate

measure of urvature.

In addition to the algebrai symmetries of the Riemann tensor (whih onstrain the

number of independent omponents at any point), there is a di�erential identity whih

it obeys (whih onstrains its relative values at di�erent points). Consider the ovariant

derivative of the Riemann tensor, evaluated in Riemann normal oordinates:

r

�

R

����

= �

�

R

����

=

1

2

�

�

(�

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

+ �

�

�

�

g

��

) : (3.86)

We would like to onsider the sum of yli permutations of the �rst three indies:

r

�

R

����

+r

�

R

����

+r

�

R

����

=

1

2
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�
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�
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� �
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� �
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+ �
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� �
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� �
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+ �
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�

�

�

�

�

g
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� �

�

�

�

�

�

g
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� �

�

�

�

�

�

g

��

+ �

�

�

�

�

�

g

��

)

= 0 : (3.87)

One again, sine this is an equation between tensors it is true in any oordinate system,

even though we derived it in a partiular one. We reognize by now that the antisymmetry
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R

����

= �R

����

allows us to write this result as

r

[�

R

��℄��

= 0 : (3.88)

This is known as the Bianhi identity. (Notie that for a general onnetion there would

be additional terms involving the torsion tensor.) It is losely related to the Jaobi identity,

sine (as you an show) it basially expresses

[[r

�

;r

�

℄;r

�

℄ + [[r

�

;r

�

℄;r

�

℄ + [[r

�

;r

�

℄;r

�

℄ = 0 : (3.89)

It is frequently useful to onsider ontrations of the Riemann tensor. Even without the

metri, we an form a ontration known as the Rii tensor:

R

��

= R

�

���

: (3.90)

Notie that, for the urvature tensor formed from an arbitrary (not neessarily Christo�el)

onnetion, there are a number of independent ontrations to take. Our primary onern is

with the Christo�el onnetion, for whih (3.90) is the only independent ontration (modulo

onventions for the sign, whih of ourse hange from plae to plae). The Rii tensor

assoiated with the Christo�el onnetion is symmetri,

R

��

= R

��

; (3.91)

as a onsequene of the various symmetries of the Riemann tensor. Using the metri, we an

take a further ontration to form the Rii salar:

R = R

�

�

= g

��

R

��

: (3.92)

An espeially useful form of the Bianhi identity omes from ontrating twie on (3.87):

0 = g

��

g

��

(r

�

R

����

+r

�

R

����

+r

�

R

����

)

= r

�

R

��

�r

�

R+r

�

R

��

; (3.93)

or

r

�

R

��

=

1

2

r

�

R : (3.94)

(Notie that, unlike the partial derivative, it makes sense to raise an index on the ovariant

derivative, due to metri ompatibility.) If we de�ne the Einstein tensor as

G

��

= R

��

�

1

2

Rg

��

; (3.95)

then we see that the twie-ontrated Bianhi identity (3.94) is equivalent to

r

�

G

��

= 0 : (3.96)
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The Einstein tensor, whih is symmetri due to the symmetry of the Rii tensor and the

metri, will be of great importane in general relativity.

The Rii tensor and the Rii salar ontain information about \traes" of the Riemann

tensor. It is sometimes useful to onsider separately those piees of the Riemann tensor

whih the Rii tensor doesn't tell us about. We therefore invent theWeyl tensor, whih is

basially the Riemann tensor with all of its ontrations removed. It is given in n dimensions

by

C

����

= R

����

�

2

(n� 2)

�

g

�[�

R

�℄�

� g

�[�

R

�℄�

�

+

2

(n� 1)(n� 2)

Rg

�[�

g

�℄�

: (3.97)

This messy formula is designed so that all possible ontrations of C

����

vanish, while it

retains the symmetries of the Riemann tensor:

C

����

= C

[��℄[��℄

;

C

����

= C

����

;

C

�[��� ℄

= 0 : (3.98)

The Weyl tensor is only de�ned in three or more dimensions, and in three dimensions it

vanishes identially. For n � 4 it satis�es a version of the Bianhi identity,

r

�

C

����

= �2

(n� 3)

(n� 2)

 

r

[�

R

�℄�

+

1

2(n� 1)

g

�[�

r

�℄

R

!

: (3.99)

One of the most important properties of the Weyl tensor is that it is invariant under onfor-

mal transformations. This means that if you ompute C

����

for some metri g

��

, and then

ompute it again for a metri given by 


2

(x)g

��

, where 
(x) is an arbitrary nonvanishing

funtion of spaetime, you get the same answer. For this reason it is often known as the

\onformal tensor."

After this large amount of formalism, it might be time to step bak and think about what

urvature means for some simple examples. First notie that, aording to (3.85), in 1, 2, 3

and 4 dimensions there are 0, 1, 6 and 20 omponents of the urvature tensor, respetively.

(Everything we say about the urvature in these examples refers to the urvature assoiated

with the Christo�el onnetion, and therefore the metri.) This means that one-dimensional

manifolds (suh as S

1

) are never urved; the intuition you have that tells you that a irle is

urved omes from thinking of it embedded in a ertain at two-dimensional plane. (There is

something alled \extrinsi urvature," whih haraterizes the way something is embedded

in a higher dimensional spae. Our notion of urvature is \intrinsi," and has nothing to do

with suh embeddings.)

The distintion between intrinsi and extrinsi urvature is also important in two dimen-

sions, where the urvature has one independent omponent. (In fat, all of the information
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identify

about the urvature is ontained in the single omponent of the Rii salar.) Consider a

ylinder, R � S

1

. Although this looks urved from our point of view, it should be lear

that we an put a metri on the ylinder whose omponents are onstant in an appropriate

oordinate system | simply unroll it and use the indued metri from the plane. In this

metri, the ylinder is at. (There is also nothing to stop us from introduing a di�erent

metri in whih the ylinder is not at, but the point we are trying to emphasize is that it

an be made at in some metri.) The same story holds for the torus:

identify

We an think of the torus as a square region of the plane with opposite sides identi�ed (in

other words, S

1

� S

1

), from whih it is lear that it an have a at metri even though it

looks urved from the embedded point of view.

A one is an example of a two-dimensional manifold with nonzero urvature at exatly

one point. We an see this also by unrolling it; the one is equivalent to the plane with a

\de�it angle" removed and opposite sides identi�ed:
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In the metri inherited from this desription as part of the at plane, the one is at every-

where but at its vertex. This an be seen by onsidering parallel transport of a vetor around

various loops; if a loop does not enlose the vertex, there will be no overall transformation,

whereas a loop that does enlose the vertex (say, just one time) will lead to a rotation by an

angle whih is just the de�it angle.

Our favorite example is of ourse the two-sphere, with metri

ds

2

= a

2

(d�

2

+ sin

2

� d�

2

) ; (3.100)

where a is the radius of the sphere (thought of as embedded in R

3

). Without going through

the details, the nonzero onnetion oeÆients are

�

�

��

= � sin � os �

�

�

��

= �

�

��

= ot � : (3.101)

Let's ompute a promising omponent of the Riemann tensor:

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��
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= (sin

2

� � os

2

�)� (0) + (0)� (� sin � os �)(ot �)

= sin

2

� : (3.102)

(The notation is obviously imperfet, sine the Greek letter � is a dummy index whih is

summed over, while the Greek letters � and � represent spei� oordinates.) Lowering an

index, we have

R

����

= g

��

R

�

���

= g

��

R

�

���

= a

2

sin

2

� : (3.103)

It is easy to hek that all of the omponents of the Riemann tensor either vanish or are

related to this one by symmetry. We an go on to ompute the Rii tensor via R

��

=

g

��

R

����

. We obtain

R

��

= g

��

R

����

= 1

R

��

= R

��

= 0

R

��

= g

��

R

����

= sin

2

� : (3.104)

The Rii salar is similarly straightforward:

R = g

��

R

��

+ g

��

R

��

=

2

a

2

: (3.105)

Therefore the Rii salar, whih for a two-dimensional manifold ompletely haraterizes

the urvature, is a onstant over this two-sphere. This is a reetion of the fat that the

manifold is \maximally symmetri," a onept we will de�ne more preisely later (although it

means what you think it should). In any number of dimensions the urvature of a maximally

symmetri spae satis�es (for some onstant a)

R

����

= a

�2

(g

��

g

��

� g

��

g

��

) ; (3.106)

whih you may hek is satis�ed by this example.

Notie that the Rii salar is not only onstant for the two-sphere, it is manifestly

positive. We say that the sphere is \positively urved" (of ourse a onvention or two ame

into play, but fortunately our onventions onspired so that spaes whih everyone agrees

to all positively urved atually have a positive Rii salar). From the point of view of

someone living on a manifold whih is embedded in a higher-dimensional Eulidean spae,

if they are sitting at a point of positive urvature the spae urves away from them in the

same way in any diretion, while in a negatively urved spae it urves away in opposite

diretions. Negatively urved spaes are therefore saddle-like.

Enough fun with examples. There is one more topi we have to over before introduing

general relativity itself: geodesi deviation. You have undoubtedly heard that the de�ning
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positive curvature

negative curvature

property of Eulidean (at) geometry is the parallel postulate: initially parallel lines remain

parallel forever. Of ourse in a urved spae this is not true; on a sphere, ertainly, initially

parallel geodesis will eventually ross. We would like to quantify this behavior for an

arbitrary urved spae.

The problem is that the notion of \parallel" does not extend naturally from at to urved

spaes. Instead what we will do is to onstrut a one-parameter family of geodesis, 

s

(t).

That is, for eah s 2 R, 

s

is a geodesi parameterized by the aÆne parameter t. The

olletion of these urves de�nes a smooth two-dimensional surfae (embedded in a manifold

M of arbitrary dimensionality). The oordinates on this surfae may be hosen to be s and

t, provided we have hosen a family of geodesis whih do not ross. The entire surfae is

the set of points x

�

(s; t) 2M . We have two natural vetor �elds: the tangent vetors to the

geodesis,

T

�

=

�x

�

�t

; (3.107)

and the \deviation vetors"

S

�

=

�x

�

�s

: (3.108)

This name derives from the informal notion that S

�

points from one geodesi towards the

neighboring ones.

The idea that S

�

points from one geodesi to the next inspires us to de�ne the \relative

veloity of geodesis,"

V

�

= (r

T

S)

�

= T

�

r

�

S

�

; (3.109)

and the \relative aeleration of geodesis,"

a

�

= (r

T

V )

�

= T

�

r

�

V

�

: (3.110)

You should take the names with a grain of salt, but these vetors are ertainly well-de�ned.
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t

s

T

S

γ  (  )
s tµ

µ

Sine S and T are basis vetors adapted to a oordinate system, their ommutator van-

ishes:

[S; T ℄ = 0 :

We would like to onsider the onventional ase where the torsion vanishes, so from (3.70)

we then have

S

�

r

�

T

�

= T

�

r

�

S

�

: (3.111)

With this in mind, let's ompute the aeleration:

a

�

= T

�

r

�

(T

�

r

�

S

�

)

= T

�

r

�

(S

�

r

�

T

�

)

= (T

�

r

�

S

�

)(r

�

T

�

) + T

�

S

�

r

�

r

�

T

�

= (S

�

r

�

T

�

)(r

�

T

�

) + T

�

S

�

(r

�

r

�

T

�

+R

�

���

T

�

)

= (S

�

r

�

T

�

)(r

�

T

�

) + S

�

r

�

(T

�

r

�

T

�

)� (S

�

r

�

T

�

)r

�

T

�

+R

�

���

T

�

T

�

S

�

= R

�

���

T

�

T

�

S

�

: (3.112)

Let's think about this line by line. The �rst line is the de�nition of a

�

, and the seond

line omes diretly from (3.111). The third line is simply the Leibniz rule. The fourth

line replaes a double ovariant derivative by the derivatives in the opposite order plus the

Riemann tensor. In the �fth line we use Leibniz again (in the opposite order from usual),

and then we anel two idential terms and notie that the term involving T

�

r

�

T

�

vanishes

beause T

�

is the tangent vetor to a geodesi. The result,

a

�

=

D

2

dt

2

S

�

= R

�

���

T

�

T

�

S

�

; (3.113)
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is known as the geodesi deviation equation. It expresses something that we might have

expeted: the relative aeleration between two neighboring geodesis is proportional to the

urvature.

Physially, of ourse, the aeleration of neighboring geodesis is interpreted as a mani-

festation of gravitational tidal fores. This reminds us that we are very lose to doing physis

by now.

There is one last piee of formalism whih it would be nie to over before we move

on to gravitation proper. What we will do is to onsider one again (although muh more

onisely) the formalism of onnetions and urvature, but this time we will use sets of basis

vetors in the tangent spae whih are not derived from any oordinate system. It will turn

out that this slight hange in emphasis reveals a di�erent point of view on the onnetion

and urvature, one in whih the relationship to gauge theories in partile physis is muh

more transparent. In fat the onepts to be introdued are very straightforward, but the

subjet is a notational nightmare, so it looks more diÆult than it really is.

Up until now we have been taking advantage of the fat that a natural basis for the

tangent spae T

p

at a point p is given by the partial derivatives with respet to the oordinates

at that point, ê

(�)

= �

�

. Similarly, a basis for the otangent spae T

�

p

is given by the gradients

of the oordinate funtions,

^

�

(�)

= dx

�

. There is nothing to stop us, however, from setting up

any bases we like. Let us therefore imagine that at eah point in the manifold we introdue

a set of basis vetors ê

(a)

(indexed by a Latin letter rather than Greek, to remind us that

they are not related to any oordinate system). We will hoose these basis vetors to be

\orthonormal", in a sense whih is appropriate to the signature of the manifold we are

working on. That is, if the anonial form of the metri is written �

ab

, we demand that the

inner produt of our basis vetors be

g(ê

(a)

; ê

(b)

) = �

ab

; (3.114)

where g( ; ) is the usual metri tensor. Thus, in a Lorentzian spaetime �

ab

represents

the Minkowski metri, while in a spae with positive-de�nite metri it would represent the

Eulidean metri. The set of vetors omprising an orthonormal basis is sometimes known

as a tetrad (from Greek tetras, \a group of four") or vielbein (from the German for \many

legs"). In di�erent numbers of dimensions it oasionally beomes a vierbein (four), dreibein

(three), zweibein (two), and so on. (Just as we annot in general �nd oordinate harts whih

over the entire manifold, we will often not be able to �nd a single set of smooth basis vetor

�elds whih are de�ned everywhere. As usual, we an overome this problem by working in

di�erent pathes and making sure things are well-behaved on the overlaps.)

The point of having a basis is that any vetor an be expressed as a linear ombination

of basis vetors. Spei�ally, we an express our old basis vetors ê

(�)

= �

�

in terms of the
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new ones:

ê

(�)

= e

a

�

ê

(a)

: (3.115)

The omponents e

a

�

form an n � n invertible matrix. (In aord with our usual pratie of

blurring the distintion between objets and their omponents, we will refer to the e

a

�

as

the tetrad or vielbein, and often in the plural as \vielbeins.") We denote their inverse by

swithing indies to obtain e

�

a

, whih satisfy

e

�

a

e

a

�

= Æ

�

�

; e

a

�

e

�

b

= Æ

a

b

: (3.116)

These serve as the omponents of the vetors ê

(a)

in the oordinate basis:

ê

(a)

= e

�

a

ê

(�)

: (3.117)

In terms of the inverse vielbeins, (3.114) beomes

g

��

e

�

a

e

�

b

= �

ab

; (3.118)

or equivalently

g

��

= e

a

�

e

b

�

�

ab

: (3.119)

This last equation sometimes leads people to say that the vielbeins are the \square root" of

the metri.

We an similarly set up an orthonormal basis of one-forms in T

�

p

, whih we denote

^

�

(a)

.

They may be hosen to be ompatible with the basis vetors, in the sense that

^

�

(a)

(ê

(b)

) = Æ

a

b

: (3.120)

It is an immediate onsequene of this that the orthonormal one-forms are related to their

oordinate-based ousins

^

�

(�)

= dx

�

by

^

�

(�)

= e

�

a

^

�

(a)

(3.121)

and

^

�

(a)

= e

a

�

^

�

(�)

: (3.122)

The vielbeins e

a

�

thus serve double duty as the omponents of the oordinate basis vetors

in terms of the orthonormal basis vetors, and as omponents of the orthonormal basis

one-forms in terms of the oordinate basis one-forms; while the inverse vielbeins serve as

the omponents of the orthonormal basis vetors in terms of the oordinate basis, and as

omponents of the oordinate basis one-forms in terms of the orthonormal basis.

Any other vetor an be expressed in terms of its omponents in the orthonormal basis.

If a vetor V is written in the oordinate basis as V

�

ê

(�)

and in the orthonormal basis as

V

a

ê

(a)

, the sets of omponents will be related by

V

a

= e

a

�

V

�

: (3.123)
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So the vielbeins allow us to \swith from Latin to Greek indies and bak." The nie property

of tensors, that there is usually only one sensible thing to do based on index plaement, is

of great help here. We an go on to refer to multi-index tensors in either basis, or even in

terms of mixed omponents:

V

a

b

= e

a

�

V

�

b

= e

�

b

V

a

�

= e

a

�

e

�

b

V

�

�

: (3.124)

Looking bak at (3.118), we see that the omponents of the metri tensor in the orthonormal

basis are just those of the at metri, �

ab

. (For this reason the Greek indies are sometimes

referred to as \urved" and the Latin ones as \at.") In fat we an go so far as to raise and

lower the Latin indies using the at metri and its inverse �

ab

. You an hek for yourself

that everything works okay (e.g., that the lowering an index with the metri ommutes with

hanging from orthonormal to oordinate bases).

By introduing a new set of basis vetors and one-forms, we neessitate a return to our

favorite topi of transformation properties. We've been areful all along to emphasize that

the tensor transformation law was only an indiret outome of a oordinate transformation;

the real issue was a hange of basis. Now that we have non-oordinate bases, these bases an

be hanged independently of the oordinates. The only restrition is that the orthonormality

property (3.114) be preserved. But we know what kind of transformations preserve the at

metri | in a Eulidean signature metri they are orthogonal transformations, while in a

Lorentzian signature metri they are Lorentz transformations. We therefore onsider hanges

of basis of the form

ê

(a)

! ê

(a

0

)

= �

a

0

a

(x)ê

(a)

; (3.125)

where the matries �

a

0

a

(x) represent position-dependent transformations whih (at eah

point) leave the anonial form of the metri unaltered:

�

a

0

a

�

b

0

b

�

ab

= �

a

0

b

0

: (3.126)

In fat these matries orrespond to what in at spae we alled the inverse Lorentz trans-

formations (whih operate on basis vetors); as before we also have ordinary Lorentz trans-

formations �

a

0

a

, whih transform the basis one-forms. As far as omponents are onerned,

as before we transform upper indies with �

a

0

a

and lower indies with �

a

0

a

.

So we now have the freedom to perform a Lorentz transformation (or an ordinary Eu-

lidean rotation, depending on the signature) at every point in spae. These transformations

are therefore alled loal Lorentz transformations, or LLT's. We still have our usual

freedom to make hanges in oordinates, whih are alled general oordinate trans-

formations, or GCT's. Both an happen at the same time, resulting in a mixed tensor

transformation law:

T

a

0

�

0

b

0

�

0

= �

a

0

a

�x

�

0

�x

�

�

b

0

b

�x

�

�x

�

0

T

a�

b�

: (3.127)
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Translating what we know about tensors into non-oordinate bases is for the most part

merely a matter of stiking vielbeins in the right plaes. The ruial exeption omes when

we begin to di�erentiate things. In our ordinary formalism, the ovariant derivative of a

tensor is given by its partial derivative plus orretion terms, one for eah index, involving

the tensor and the onnetion oeÆients. The same proedure will ontinue to be true

for the non-oordinate basis, but we replae the ordinary onnetion oeÆients �

�

��

by the

spin onnetion, denoted !

�

a

b

. Eah Latin index gets a fator of the spin onnetion in

the usual way:

r

�

X

a

b

= �

�

X

a

b

+ !

�

a



X



b

� !

�



b

X

a



: (3.128)

(The name \spin onnetion" omes from the fat that this an be used to take ovari-

ant derivatives of spinors, whih is atually impossible using the onventional onnetion

oeÆients.) In the presene of mixed Latin and Greek indies we get terms of both kinds.

The usual demand that a tensor be independent of the way it is written allows us to

derive a relationship between the spin onnetion, the vielbeins, and the �

�

��

's. Consider the

ovariant derivative of a vetor X, �rst in a purely oordinate basis:

rX = (r

�

X

�

)dx

�


 �

�

= (�

�

X

�

+ �

�

��

X

�

)dx

�


 �

�

: (3.129)

Now �nd the same objet in a mixed basis, and onvert into the oordinate basis:

rX = (r

�

X

a

)dx

�


 ê

(a)

= (�

�

X

a

+ !

�

a

b

X

b

)dx

�


 ê

(a)

= (�

�

(e

a

�

X

�

) + !

�

a

b

e

b

�

X

�

)dx

�


 (e

�

a

�

�

)

= e

�

a

(e

a

�

�

�

X

�

+X

�

�

�

e

a

�

+ !

�

a

b

e

b

�

X

�

)dx

�


 �

�

= (�

�

X

�

+ e

�

a

�

�

e

a

�

X

�

+ e

�

a

e

b

�

!

�

a

b

X

�

)dx

�


 �

�

: (3.130)

Comparison with (3.129) reveals

�

�

��

= e

�

a

�

�

e

a

�

+ e

�

a

e

b

�

!

�

a

b

; (3.131)

or equivalently

!

�

a

b

= e

a

�

e

�

b

�

�

��

� e

�

b

�

�

e

a

�

: (3.132)

A bit of manipulation allows us to write this relation as the vanishing of the ovariant

derivative of the vielbein,

r

�

e

a

�

= 0 ; (3.133)

whih is sometimes known as the \tetrad postulate." Note that this is always true; we did

not need to assume anything about the onnetion in order to derive it. Spei�ally, we did

not need to assume that the onnetion was metri ompatible or torsion free.
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Sine the onnetion may be thought of as something we need to �x up the transformation

law of the ovariant derivative, it should ome as no surprise that the spin onnetion does

not itself obey the tensor transformation law. Atually, under GCT's the one lower Greek

index does transform in the right way, as a one-form. But under LLT's the spin onnetion

transforms inhomogeneously, as

!

�

a

0

b

0

= �

a

0

a

�

b

0

b

!

�

a

b

� �

b

0



�

�

�

a

0



: (3.134)

You are enouraged to hek for yourself that this results in the proper transformation of

the ovariant derivative.

So far we have done nothing but empty formalism, translating things we already knew

into a new notation. But the work we are doing does buy us two things. The �rst, whih

we already alluded to, is the ability to desribe spinor �elds on spaetime and take their

ovariant derivatives; we won't explore this further right now. The seond is a hange in

viewpoint, in whih we an think of various tensors as tensor-valued di�erential forms. For

example, an objet like X

�

a

, whih we think of as a (1; 1) tensor written with mixed indies,

an also be thought of as a \vetor-valued one-form." It has one lower Greek index, so we

think of it as a one-form, but for eah value of the lower index it is a vetor. Similarly a

tensor A

��

a

b

, antisymmetri in � and �, an be thought of as a \(1; 1)-tensor-valued two-

form." Thus, any tensor with some number of antisymmetri lower Greek indies and some

number of Latin indies an be thought of as a di�erential form, but taking values in the

tensor bundle. (Ordinary di�erential forms are simply salar-valued forms.) The usefulness

of this viewpoint omes when we onsider exterior derivatives. If we want to think of X

�

a

as a vetor-valued one-form, we are tempted to take its exterior derivative:

(dX)

��

a

= �

�

X

�

a

� �

�

X

�

a

: (3.135)

It is easy to hek that this objet transforms like a two-form (that is, aording to the

transformation law for (0; 2) tensors) under GCT's, but not as a vetor under LLT's (the

Lorentz transformations depend on position, whih introdues an inhomogeneous term into

the transformation law). But we an �x this by judiious use of the spin onnetion, whih

an be thought of as a one-form. (Not a tensor-valued one-form, due to the nontensorial

transformation law (3.134).) Thus, the objet

(dX)

��

a

+ (! ^X)

��

a

= �

�

X

�

a

� �

�

X

�

a

+ !

�

a

b

X

�

b

� !

�

a

b

X

�

b

; (3.136)

as you an verify at home, transforms as a proper tensor.

An immediate appliation of this formalism is to the expressions for the torsion and

urvature, the two tensors whih haraterize any given onnetion. The torsion, with two

antisymmetri lower indies, an be thought of as a vetor-valued two-form T

��

a

. The
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urvature, whih is always antisymmetri in its last two indies, is a (1; 1)-tensor-valued

two-form, R

a

b��

. Using our freedom to suppress indies on di�erential forms, we an write

the de�ning relations for these two tensors as

T

a

= de

a

+ !

a

b

^ e

b

(3.137)

and

R

a

b

= d!

a

b

+ !

a



^ !



b

: (3.138)

These are known as the Maurer-Cartan struture equations. They are equivalent to

the usual de�nitions; let's go through the exerise of showing this for the torsion, and you

an hek the urvature for yourself. We have

T

��

�

= e

�

a

T

��

a

= e

�

a

(�

�

e

�

a

� �

�

e

�

a

+ !

�

a

b

e

�

b

� !

�

a

b

e

�

b

)

= �

�

��

� �

�

��

; (3.139)

whih is just the original de�nition we gave. Here we have used (3.131), the expression for

the �

�

��

's in terms of the vielbeins and spin onnetion. We an also express identities obeyed

by these tensors as

dT

a

+ !

a

b

^ T

b

= R

a

b

^ e

b

(3.140)

and

dR

a

b

+ !

a



^R



b

�R

a



^ !



b

= 0 : (3.141)

The �rst of these is the generalization of R

�

[��� ℄

= 0, while the seond is the Bianhi identity

r

[�j

R

�

�j�� ℄

= 0. (Sometimes both equations are alled Bianhi identities.)

The form of these expressions leads to an almost irresistible temptation to de�ne a

\ovariant-exterior derivative", whih ats on a tensor-valued form by taking the ordinary

exterior derivative and then adding appropriate terms with the spin onnetion, one for eah

Latin index. Although we won't do that here, it is okay to give in to this temptation, and

in fat the right hand side of (3.137) and the left hand sides of (3.140) and (3.141) an be

thought of as just suh ovariant-exterior derivatives. But be areful, sine (3.138) annot;

you an't take any sort of ovariant derivative of the spin onnetion, sine it's not a tensor.

So far our equations have been true for general onnetions; let's see what we get for the

Christo�el onnetion. The torsion-free requirement is just that (3.137) vanish; this does

not lead immediately to any simple statement about the oeÆients of the spin onnetion.

Metri ompatibility is expressed as the vanishing of the ovariant derivative of the metri:

rg = 0. We an see what this leads to when we express the metri in the orthonormal basis,

where its omponents are simply �

ab

:

r

�

�

ab

= �

�

�

ab

� !

�



a

�

b

� !

�



b

�

a
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= �!

�ab

� !

�ba

: (3.142)

Then setting this equal to zero implies

!

�ab

= �!

�ba

: (3.143)

Thus, metri ompatibility is equivalent to the antisymmetry of the spin onnetion in its

Latin indies. (As before, suh a statement is only sensible if both indies are either upstairs

or downstairs.) These two onditions together allow us to express the spin onnetion in

terms of the vielbeins. There is an expliit formula whih expresses this solution, but in

pratie it is easier to simply solve the torsion-free ondition

!

ab

^ e

b

= �de

a

; (3.144)

using the asymmetry of the spin onnetion, to �nd the individual omponents.

We now have the means to ompare the formalism of onnetions and urvature in Rie-

mannian geometry to that of gauge theories in partile physis. (This is an aside, whih is

hopefully omprehensible to everybody, but not an essential ingredient of the ourse.) In

both situations, the �elds of interest live in vetor spaes whih are assigned to eah point

in spaetime. In Riemannian geometry the vetor spaes inlude the tangent spae, the

otangent spae, and the higher tensor spaes onstruted from these. In gauge theories,

on the other hand, we are onerned with \internal" vetor spaes. The distintion is that

the tangent spae and its relatives are intimately assoiated with the manifold itself, and

were naturally de�ned one the manifold was set up; an internal vetor spae an be of any

dimension we like, and has to be de�ned as an independent addition to the manifold. In

math lingo, the union of the base manifold with the internal vetor spaes (de�ned at eah

point) is a �ber bundle, and eah opy of the vetor spae is alled the \�ber" (in perfet

aord with our de�nition of the tangent bundle).

Besides the base manifold (for us, spaetime) and the �bers, the other important ingre-

dient in the de�nition of a �ber bundle is the \struture group," a Lie group whih ats

on the �bers to desribe how they are sewn together on overlapping oordinate pathes.

Without going into details, the struture group for the tangent bundle in a four-dimensional

spaetime is generally GL(4;R), the group of real invertible 4 � 4 matries; if we have a

Lorentzian metri, this may be redued to the Lorentz group SO(3; 1). Now imagine that

we introdue an internal three-dimensional vetor spae, and sew the �bers together with

ordinary rotations; the struture group of this new bundle is then SO(3). A �eld that lives

in this bundle might be denoted �

A

(x

�

), where A runs from one to three; it is a three-vetor

(an internal one, unrelated to spaetime) for eah point on the manifold. We have freedom

to hoose the basis in the �bers in any way we wish; this means that \physial quantities"

should be left invariant under loal SO(3) transformations suh as

�

A

(x

�

)! �

A

0

(x

�

) = O

A

0

A

(x

�

)�

A

(x

�

) ; (3.145)



3 CURVATURE 95

where O

A

0

A

(x

�

) is a matrix in SO(3) whih depends on spaetime. Suh transformations

are known as gauge transformations, and theories invariant under them are alled \gauge

theories."

For the most part it is not hard to arrange things suh that physial quantities are

invariant under gauge transformations. The one diÆulty arises when we onsider partial

derivatives, �

�

�

A

. Beause the matrix O

A

0

A

(x

�

) depends on spaetime, it will ontribute an

unwanted term to the transformation of the partial derivative. By now you should be able

to guess the solution: introdue a onnetion to orret for the inhomogeneous term in the

transformation law. We therefore de�ne a onnetion on the �ber bundle to be an objet

A

�

A

B

, with two \group indies" and one spaetime index. Under GCT's it transforms as a

one-form, while under gauge transformations it transforms as

A

�

A

0

B

0

= O

A

0

A

O

B

0

B

A

�

A

B

�O

B

0

C

�

�

O

A

0

C

: (3.146)

(Beware: our onventions are so drastially di�erent from those in the partile physis liter-

ature that I won't even try to get them straight.) With this transformation law, the \gauge

ovariant derivative"

D

�

�

A

= �

�

�

A

+A

�

A

B

�

B

(3.147)

transforms \tensorially" under gauge transformations, as you are welome to hek. (In

ordinary eletromagnetism the onnetion is just the onventional vetor potential. No

indies are neessary, beause the struture group U(1) is one-dimensional.)

It is lear that this notion of a onnetion on an internal �ber bundle is very losely

related to the onnetion on the tangent bundle, espeially in the orthonormal-frame piture

we have been disussing. The transformation law (3.146), for example, is exatly the same

as the transformation law (3.134) for the spin onnetion. We an also de�ne a urvature or

\�eld strength" tensor whih is a two-form,

F

A

B

= dA

A

B

+A

A

C

^A

C

B

; (3.148)

in exat orrespondene with (3.138). We an parallel transport things along paths, and

there is a onstrution analogous to the parallel propagator; the trae of the matrix obtained

by parallel transporting a vetor around a losed urve is alled a \Wilson loop."

We ould go on in the development of the relationship between the tangent bundle and

internal vetor bundles, but time is short and we have other �sh to fry. Let us instead �nish

by emphasizing the important di�erene between the two onstrutions. The di�erene

stems from the fat that the tangent bundle is losely related to the base manifold, while

other �ber bundles are taked on after the fat. It makes sense to say that a vetor in the

tangent spae at p \points along a path" through p; but this makes no sense for an internal

vetor bundle. There is therefore no analogue of the oordinate basis for an internal spae |
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partial derivatives along urves have nothing to do with internal vetors. It follows in turn

that there is nothing like the vielbeins, whih relate orthonormal bases to oordinate bases.

The torsion tensor, in partiular, is only de�ned for a onnetion on the tangent bundle, not

for any gauge theory onnetions; it an be thought of as the ovariant exterior derivative

of the vielbein, and no suh onstrution is available on an internal bundle. You should

appreiate the relationship between the di�erent uses of the notion of a onnetion, without

getting arried away.
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4 Gravitation

Having paid our mathematial dues, we are now prepared to examine the physis of gravita-

tion as desribed by general relativity. This subjet falls naturally into two piees: how the

urvature of spaetime ats on matter to manifest itself as \gravity", and how energy and

momentum inuene spaetime to reate urvature. In either ase it would be legitimate

to start at the top, by stating outright the laws governing physis in urved spaetime and

working out their onsequenes. Instead, we will try to be a little more motivational, starting

with basi physial priniples and attempting to argue that these lead naturally to an almost

unique physial theory.

The most basi of these physial priniples is the Priniple of Equivalene, whih omes

in a variety of forms. The earliest form dates from Galileo and Newton, and is known as

theWeak Equivalene Priniple, or WEP. The WEP states that the \inertial mass" and

\gravitational mass" of any objet are equal. To see what this means, think about Newton's

Seond Law. This relates the fore exerted on an objet to the aeleration it undergoes,

setting them proportional to eah other with the onstant of proportionality being the inertial

mass m

i

:

f = m

i

a : (4.1)

The inertial mass learly has a universal harater, related to the resistane you feel when

you try to push on the objet; it is the same onstant no matter what kind of fore is being

exerted. We also have the law of gravitation, whih states that the gravitational fore exerted

on an objet is proportional to the gradient of a salar �eld �, known as the gravitational

potential. The onstant of proportionality in this ase is alled the gravitational mass m

g

:

f

g

= �m

g

r� : (4.2)

On the fae of it, m

g

has a very di�erent harater than m

i

; it is a quantity spei� to the

gravitational fore. If you like, it is the \gravitational harge" of the body. Nevertheless,

Galileo long ago showed (aporyphally by dropping weights o� of the Leaning Tower of Pisa,

atually by rolling balls down inlined planes) that the response of matter to gravitation was

universal | every objet falls at the same rate in a gravitational �eld, independent of the

omposition of the objet. In Newtonian mehanis this translates into the WEP, whih is

simply

m

i

= m

g

(4.3)

for any objet. An immediate onsequene is that the behavior of freely-falling test partiles

is universal, independent of their mass (or any other qualities they may have); in fat we

97
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have

a = �r� : (4.4)

The universality of gravitation, as implied by the WEP, an be stated in another, more

popular, form. Imagine that we onsider a physiist in a tightly sealed box, unable to

observe the outside world, who is doing experiments involving the motion of test partiles,

for example to measure the loal gravitational �eld. Of ourse she would obtain di�erent

answers if the box were sitting on the moon or on Jupiter than she would on the Earth.

But the answers would also be di�erent if the box were aelerating at a onstant veloity;

this would hange the aeleration of the freely-falling partiles with respet to the box.

The WEP implies that there is no way to disentangle the e�ets of a gravitational �eld

from those of being in a uniformly aelerating frame, simply by observing the behavior of

freely-falling partiles. This follows from the universality of gravitation; it would be possible

to distinguish between uniform aeleration and an eletromagneti �eld, by observing the

behavior of partiles with di�erent harges. But with gravity it is impossible, sine the

\harge" is neessarily proportional to the (inertial) mass.

To be areful, we should limit our laims about the impossibility of distinguishing gravity

from uniform aeleration by restriting our attention to \small enough regions of spaetime."

If the sealed box were suÆiently big, the gravitational �eld would hange from plae to plae

in an observable way, while the e�et of aeleration is always in the same diretion. In a

roket ship or elevator, the partiles always fall straight down:

In a very big box in a gravitational �eld, however, the partiles will move toward the enter

of the Earth (for example), whih might be a di�erent diretion in di�erent regions:
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Earth

The WEP an therefore be stated as \the laws of freely-falling partiles are the same in a

gravitational �eld and a uniformly aelerated frame, in small enough regions of spaetime."

In larger regions of spaetime there will be inhomogeneities in the gravitational �eld, whih

will lead to tidal fores whih an be deteted.

After the advent of speial relativity, the onept of mass lost some of its uniqueness, as

it beame lear that mass was simply a manifestation of energy and momentum (E = m

2

and all that). It was therefore natural for Einstein to think about generalizing the WEP

to something more inlusive. His idea was simply that there should be no way whatsoever

for the physiist in the box to distinguish between uniform aeleration and an external

gravitational �eld, no matter what experiments she did (not only by dropping test partiles).

This reasonable extrapolation beame what is now known as the Einstein Equivalene

Priniple, or EEP: \In small enough regions of spaetime, the laws of physis redue to

those of speial relativity; it is impossible to detet the existene of a gravitational �eld."

In fat, it is hard to imagine theories whih respet the WEP but violate the EEP.

Consider a hydrogen atom, a bound state of a proton and an eletron. Its mass is atually

less than the sum of the masses of the proton and eletron onsidered individually, beause

there is a negative binding energy | you have to put energy into the atom to separate the

proton and eletron. Aording to the WEP, the gravitational mass of the hydrogen atom is

therefore less than the sum of the masses of its onstituents; the gravitational �eld ouples

to eletromagnetism (whih holds the atom together) in exatly the right way to make the

gravitational mass ome out right. This means that not only must gravity ouple to rest

mass universally, but to all forms of energy and momentum| whih is pratially the laim

of the EEP. It is possible to ome up with ounterexamples, however; for example, we ould

imagine a theory of gravity in whih freely falling partiles began to rotate as they moved

through a gravitational �eld. Then they ould fall along the same paths as they would in

an aelerated frame (thereby satisfying the WEP), but you ould nevertheless detet the
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existene of the gravitational �eld (in violation of the EEP). Suh theories seem ontrived,

but there is no law of nature whih forbids them.

Sometimes a distintion is drawn between \gravitational laws of physis" and \non-

gravitational laws of physis," and the EEP is de�ned to apply only to the latter. Then

one de�nes the \Strong Equivalene Priniple" (SEP) to inlude all of the laws of physis,

gravitational and otherwise. I don't �nd this a partiularly useful distintion, and won't

belabor it. For our purposes, the EEP (or simply \the priniple of equivalene") inludes all

of the laws of physis.

It is the EEP whih implies (or at least suggests) that we should attribute the ation

of gravity to the urvature of spaetime. Remember that in speial relativity a prominent

role is played by inertial frames | while it was not possible to single out some frame of

referene as uniquely \at rest", it was possible to single out a family of frames whih were

\unaelerated" (inertial). The aeleration of a harged partile in an eletromagneti �eld

was therefore uniquely de�ned with respet to these frames. The EEP, on the other hand,

implies that gravity is inesapable | there is no suh thing as a \gravitationally neutral

objet" with respet to whih we an measure the aeleration due to gravity. It follows

that \the aeleration due to gravity" is not something whih an be reliably de�ned, and

therefore is of little use.

Instead, it makes more sense to de�ne \unaelerated" as \freely falling," and that is

what we shall do. This point of view is the origin of the idea that gravity is not a \fore"

| a fore is something whih leads to aeleration, and our de�nition of zero aeleration is

\moving freely in the presene of whatever gravitational �eld happens to be around."

This seemingly innouous step has profound impliations for the nature of spaetime. In

SR, we had a proedure for starting at some point and onstruting an inertial frame whih

strethed throughout spaetime, by joining together rigid rods and attahing loks to them.

But, again due to inhomogeneities in the gravitational �eld, this is no longer possible. If

we start in some freely-falling state and build a large struture out of rigid rods, at some

distane away freely-falling objets will look like they are \aelerating" with respet to this

referene frame, as shown in the �gure on the next page.



4 GRAVITATION 101

The solution is to retain the notion of inertial frames, but to disard the hope that they

an be uniquely extended throughout spae and time. Instead we an de�ne loally inertial

frames, those whih follow the motion of freely falling partiles in small enough regions of

spaetime. (Every time we say \small enough regions", purists should imagine a limiting

proedure in whih we take the appropriate spaetime volume to zero.) This is the best we

an do, but it fores us to give up a good deal. For example, we an no longer speak with

on�dene about the relative veloity of far away objets, sine the inertial referene frames

appropriate to those objets are independent of those appropriate to us.

So far we have been talking stritly about physis, without jumping to the onlusion

that spaetime should be desribed as a urved manifold. It should be lear, however, why

suh a onlusion is appropriate. The idea that the laws of speial relativity should be

obeyed in suÆiently small regions of spaetime, and further that loal inertial frames an

be established in suh regions, orresponds to our ability to onstrut Riemann normal oor-

dinates at any one point on a manifold | oordinates in whih the metri takes its anonial

form and the Christo�el symbols vanish. The impossibility of omparing veloities (vetors)

at widely separated regions orresponds to the path-dependene of parallel transport on a

urved manifold. These onsiderations were enough to give Einstein the idea that gravity

was a manifestation of spaetime urvature. But in fat we an be even more persuasive.

(It is impossible to \prove" that gravity should be thought of as spaetime urvature, sine

sienti� hypotheses an only be falsi�ed, never veri�ed [and not even really falsi�ed, as

Thomas Kuhn has famously argued℄. But there is nothing to be dissatis�ed with about

onvining plausibility arguments, if they lead to empirially suessful theories.)

Let's onsider one of the elebrated preditions of the EEP, the gravitational redshift.

Consider two boxes, a distane z apart, moving (far away from any matter, so we assume

in the absene of any gravitational �eld) with some onstant aeleration a. At time t

0

the

trailing box emits a photon of wavelength �

0

.
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z

z

t = t t = t  + z / c

a

a

0 0

λ
0

The boxes remain a onstant distane apart, so the photon reahes the leading box after

a time �t = z= in the referene frame of the boxes. In this time the boxes will have piked

up an additional veloity �v = a�t = az=. Therefore, the photon reahing the lead box

will be redshifted by the onventional Doppler e�et by an amount

��

�

0

=

�v



=

az



2

: (4.5)

(We assume �v= is small, so we only work to �rst order.) Aording to the EEP, the

same thing should happen in a uniform gravitational �eld. So we imagine a tower of height

z sitting on the surfae of a planet, with a

g

the strength of the gravitational �eld (what

Newton would have alled the \aeleration due to gravity").

λ
0

z

This situation is supposed to be indistinguishable from the previous one, from the point of

view of an observer in a box at the top of the tower (able to detet the emitted photon, but
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otherwise unable to look outside the box). Therefore, a photon emitted from the ground

with wavelength �

0

should be redshifted by an amount

��

�

0

=

a

g

z



2

: (4.6)

This is the famous gravitational redshift. Notie that it is a diret onsequene of the EEP,

not of the details of general relativity. It has been veri�ed experimentally, �rst by Pound

and Rebka in 1960. They used the M�ossbauer e�et to measure the hange in frequeny in

-rays as they traveled from the ground to the top of Je�erson Labs at Harvard.

The formula for the redshift is more often stated in terms of the Newtonian potential

�, where a

g

= r�. (The sign is hanged with respet to the usual onvention, sine we

are thinking of a

g

as the aeleration of the referene frame, not of a partile with respet

to this referene frame.) A non-onstant gradient of � is like a time-varying aeleration,

and the equivalent net veloity is given by integrating over the time between emission and

absorption of the photon. We then have

��

�

0

=

1



Z

r� dt

=

1



2

Z

�

z

� dz

= �� ; (4.7)

where �� is the total hange in the gravitational potential, and we have one again set

 = 1. This simple formula for the gravitational redshift ontinues to be true in more general

irumstanes. Of ourse, by using the Newtonian potential at all, we are restriting our

domain of validity to weak gravitational �elds, but that is usually ompletely justi�ed for

observable e�ets.

The gravitational redshift leads to another argument that we should onsider spaetime

as urved. Consider the same experimental setup that we had before, now portrayed on the

spaetime diagram on the next page.

The physiist on the ground emits a beam of light with wavelength �

0

from a height z

0

,

whih travels to the top of the tower at height z

1

. The time between when the beginning of

any single wavelength of the light is emitted and the end of that same wavelength is emitted

is �t

0

= �

0

=, and the same time interval for the absorption is �t

1

= �

1

=. Sine we imagine

that the gravitational �eld is not varying with time, the paths through spaetime followed

by the leading and trailing edge of the single wave must be preisely ongruent. (They are

represented by some generi urved paths, sine we do not pretend that we know just what

the paths will be.) Simple geometry tells us that the times �t

0

and �t

1

must be the same.

But of ourse they are not; the gravitational redshift implies that �t

1

> �t

0

. (Whih we

an interpret as \the lok on the tower appears to run more quikly.") The fault lies with
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z z
z

t

t∆
0

∆ t
1

0 1

\simple geometry"; a better desription of what happens is to imagine that spaetime is

urved.

All of this should onstitute more than enough motivation for our laim that, in the

presene of gravity, spaetime should be thought of as a urved manifold. Let us now take

this to be true and begin to set up how physis works in a urved spaetime. The priniple of

equivalene tells us that the laws of physis, in small enough regions of spaetime, look like

those of speial relativity. We interpret this in the language of manifolds as the statement

that these laws, when written in Riemannian normal oordinates x

�

based at some point

p, are desribed by equations whih take the same form as they would in at spae. The

simplest example is that of freely-falling (unaelerated) partiles. In at spae suh partiles

move in straight lines; in equations, this is expressed as the vanishing of the seond derivative

of the parameterized path x

�

(�):

d

2

x

�

d�

2

= 0 : (4.8)

Aording to the EEP, exatly this equation should hold in urved spae, as long as the

oordinates x

�

are RNC's. What about some other oordinate system? As it stands, (4.8)

is not an equation between tensors. However, there is a unique tensorial equation whih

redues to (4.8) when the Christo�el symbols vanish; it is

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

= 0 : (4.9)

Of ourse, this is simply the geodesi equation. In general relativity, therefore, free partiles

move along geodesis; we have mentioned this before, but now you know why it is true.

As far as free partiles go, we have argued that urvature of spaetime is neessary to

desribe gravity; we have not yet shown that it is suÆient. To do so, we an show how the

usual results of Newtonian gravity �t into the piture. We de�ne the \Newtonian limit" by

three requirements: the partiles are moving slowly (with respet to the speed of light), the
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gravitational �eld is weak (an be onsidered a perturbation of at spae), and the �eld is

also stati (unhanging with time). Let us see what these assumptions do to the geodesi

equation, taking the proper time � as an aÆne parameter. \Moving slowly" means that

dx

i

d�

<<

dt

d�

; (4.10)

so the geodesi equation beomes

d

2

x

�

d�

2

+ �

�

00

 

dt

d�

!

2

= 0 : (4.11)

Sine the �eld is stati, the relevant Christo�el symbols �

�

00

simplify:

�

�

00

=

1

2

g

��

(�

0

g

�0

+ �

0

g

0�

� �

�

g

00

)

= �

1

2

g

��

�

�

g

00

: (4.12)

Finally, the weakness of the gravitational �eld allows us to deompose the metri into the

Minkowski form plus a small perturbation:

g

��

= �

��

+ h

��

; jh

��

j << 1 : (4.13)

(We are working in Cartesian oordinates, so �

��

is the anonial form of the metri. The

\smallness ondition" on the metri perturbation h

��

doesn't really make sense in other

oordinates.) From the de�nition of the inverse metri, g

��

g

��

= Æ

�

�

, we �nd that to �rst

order in h,

g

��

= �

��

� h

��

; (4.14)

where h

��

= �

��

�

��

h

��

. In fat, we an use the Minkowski metri to raise and lower indies

on an objet of any de�nite order in h, sine the orretions would only ontribute at higher

orders.

Putting it all together, we �nd

�

�

00

= �

1

2

�

��

�

�

h

00

: (4.15)

The geodesi equation (4.11) is therefore

d

2

x

�

d�

2

=

1

2

�

��

�

�

h

00

 

dt

d�

!

2

: (4.16)

Using �

0

h

00

= 0, the � = 0 omponent of this is just

d

2

t

d�

2

= 0 : (4.17)
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That is,

dt

d�

is onstant. To examine the spaelike omponents of (4.16), reall that the

spaelike omponents of �

��

are just those of a 3 � 3 identity matrix. We therefore have

d

2

x

i

d�

2

=

1

2

 

dt

d�

!

2

�

i

h

00

: (4.18)

Dividing both sides by

�

dt

d�

�

2

has the e�et of onverting the derivative on the left-hand side

from � to t, leaving us with

d

2

x

i

dt

2

=

1

2

�

i

h

00

: (4.19)

This begins to look a great deal like Newton's theory of gravitation. In fat, if we ompare

this equation to (4.4), we �nd that they are the same one we identify

h

00

= �2� ; (4.20)

or in other words

g

00

= �(1 + 2�) : (4.21)

Therefore, we have shown that the urvature of spaetime is indeed suÆient to desribe

gravity in the Newtonian limit, as long as the metri takes the form (4.21). It remains, of

ourse, to �nd �eld equations for the metri whih imply that this is the form taken, and

that for a single gravitating body we reover the Newtonian formula

� = �

GM

r

; (4.22)

but that will ome soon enough.

Our next task is to show how the remaining laws of physis, beyond those governing freely-

falling partiles, adapt to the urvature of spaetime. The proedure essentially follows the

paradigm established in arguing that free partiles move along geodesis. Take a law of

physis in at spae, traditionally written in terms of partial derivatives and the at metri.

Aording to the equivalene priniple this law will hold in the presene of gravity, as long

as we are in Riemannian normal oordinates. Translate the law into a relationship between

tensors; for example, hange partial derivatives to ovariant ones. In RNC's this version of

the law will redue to the at-spae one, but tensors are oordinate-independent objets, so

the tensorial version must hold in any oordinate system.

This proedure is sometimes given a name, the Priniple of Covariane. I'm not

sure that it deserves its own name, sine it's really a onsequene of the EEP plus the

requirement that the laws of physis be independent of oordinates. (The requirement that

laws of physis be independent of oordinates is essentially impossible to even imagine being

untrue. Given some experiment, if one person uses one oordinate system to predit a result

and another one uses a di�erent oordinate system, they had better agree.) Another name
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is the \omma-goes-to-semiolon rule", sine at a typographial level the thing you have to

do is replae partial derivatives (ommas) with ovariant ones (semiolons).

We have already impliitly used the priniple of ovariane (or whatever you want to

all it) in deriving the statement that free partiles move along geodesis. For the most

part, it is very simple to apply it to interesting ases. Consider for example the formula for

onservation of energy in at spaetime, �

�

T

��

= 0. The adaptation to urved spaetime is

immediate:

r

�

T

��

= 0 : (4.23)

This equation expresses the onservation of energy in the presene of a gravitational �eld.

Unfortunately, life is not always so easy. Consider Maxwell's equations in speial relativ-

ity, where it would seem that the priniple of ovariane an be applied in a straightforward

way. The inhomogeneous equation �

�

F

��

= 4�J

�

beomes

r

�

F

��

= 4�J

�

; (4.24)

and the homogeneous one �

[�

F

��℄

= 0 beomes

r

[�

F

��℄

= 0 : (4.25)

On the other hand, we ould also write Maxwell's equations in at spae in terms of di�er-

ential forms as

d(�F ) = 4�(�J) ; (4.26)

and

dF = 0 : (4.27)

These are already in perfetly tensorial form, sine we have shown that the exterior derivative

is a well-de�ned tensor operator regardless of what the onnetion is. We therefore begin

to worry a little bit; what is the guarantee that the proess of writing a law of physis in

tensorial form gives a unique answer? In fat, as we have mentioned earlier, the di�erential

forms versions of Maxwell's equations should be taken as fundamental. Nevertheless, in this

ase it happens to make no di�erene, sine in the absene of torsion (4.26) is idential

to (4.24), and (4.27) is idential to (4.25); the symmetri part of the onnetion doesn't

ontribute. Similarly, the de�nition of the �eld strength tensor in terms of the potential A

�

an be written either as

F

��

= r

�

A

�

�r

�

A

�

; (4.28)

or equally well as

F = dA : (4.29)

The worry about uniqueness is a real one, however. Imagine that two vetor �elds X

�

and Y

�

obey a law in at spae given by

Y

�

�

�

�

�

X

�

= 0 : (4.30)
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The problem in writing this as a tensor equation should be lear: the partial derivatives an

be ommuted, but ovariant derivatives annot. If we simply replae the partials in (4.30)

by ovariant derivatives, we get a di�erent answer than we would if we had �rst exhanged

the order of the derivatives (leaving the equation in at spae invariant) and then replaed

them. The di�erene is given by

Y

�

r

�

r

�

X

�

� Y

�

r

�

r

�

X

�

= �R

��

Y

�

X

�

: (4.31)

The presription for generalizing laws from at to urved spaetimes does not guide us in

hoosing the order of the derivatives, and therefore is ambiguous about whether a term

suh as that in (4.31) should appear in the presene of gravity. (The problem of ordering

ovariant derivatives is similar to the problem of operator-ordering ambiguities in quantum

mehanis.)

In the literature you an �nd various presriptions for dealing with ambiguities suh as

this, most of whih are sensible piees of advie suh as remembering to preserve gauge

invariane for eletromagnetism. But deep down the real answer is that there is no way to

resolve these problems by pure thought alone; the fat is that there may be more than one

way to adapt a law of physis to urved spae, and ultimately only experiment an deide

between the alternatives.

In fat, let us be honest about the priniple of equivalene: it serves as a useful guideline,

but it does not deserve to be treated as a fundamental priniple of nature. From the modern

point of view, we do not expet the EEP to be rigorously true. Consider the following

alternative version of (4.24):

r

�

[(1 + �R)F

��

℄ = 4�J

�

; (4.32)

where R is the Rii salar and � is some oupling onstant. If this equation orretly

desribed eletrodynamis in urved spaetime, it would be possible to measure R even in

an arbitrarily small region, by doing experiments with harged partiles. The equivalene

priniple therefore demands that � = 0. But otherwise this is a perfetly respetable equa-

tion, onsistent with harge onservation and other desirable features of eletromagnetism,

whih redues to the usual equation in at spae. Indeed, in a world governed by quantum

mehanis we expet all possible ouplings between di�erent �elds (suh as gravity and ele-

tromagnetism) that are onsistent with the symmetries of the theory (in this ase, gauge

invariane). So why is it reasonable to set � = 0? The real reason is one of sales. Notie that

the Rii tensor involves seond derivatives of the metri, whih is dimensionless, so R has

dimensions of (length)

�2

(with  = 1). Therefore � must have dimensions of (length)

2

. But

sine the oupling represented by � is of gravitational origin, the only reasonable expetation

for the relevant length sale is

� � l

2

P

; (4.33)
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where l

P

is the Plank length

l

P

=

 

G�h



3

!

1=2

= 1:6 � 10

�33

m ; (4.34)

where �h is of ourse Plank's onstant. So the length sale orresponding to this oupling is

extremely small, and for any oneivable experiment we expet the typial sale of variation

for the gravitational �eld to be muh larger. Therefore the reason why this equivalene-

priniple-violating term an be safely ignored is simply beause �R is probably a fantastially

small number, far out of the reah of any experiment. On the other hand, we might as well

keep an open mind, sine our expetations are not always borne out by observation.

Having established how physial laws govern the behavior of �elds and objets in a urved

spaetime, we an omplete the establishment of general relativity proper by introduing

Einstein's �eld equations, whih govern how the metri responds to energy and momentum.

We will atually do this in two ways: �rst by an informal argument lose to what Einstein

himself was thinking, and then by starting with an ation and deriving the orresponding

equations of motion.

The informal argument begins with the realization that we would like to �nd an equation

whih supersedes the Poisson equation for the Newtonian potential:

r

2

� = 4�G� ; (4.35)

where r

2

= Æ

ij

�

i

�

j

is the Laplaian in spae and � is the mass density. (The expliit form of

� given in (4.22) is one solution of (4.35), for the ase of a pointlike mass distribution.) What

harateristis should our sought-after equation possess? On the left-hand side of (4.35) we

have a seond-order di�erential operator ating on the gravitational potential, and on the

right-hand side a measure of the mass distribution. A relativisti generalization should take

the form of an equation between tensors. We know what the tensor generalization of the mass

density is; it's the energy-momentum tensor T

��

. The gravitational potential, meanwhile,

should get replaed by the metri tensor. We might therefore guess that our new equation

will have T

��

set proportional to some tensor whih is seond-order in derivatives of the

metri. In fat, using (4.21) for the metri in the Newtonian limit and T

00

= �, we see that

in this limit we are looking for an equation that predits

r

2

h

00

= �8�GT

00

; (4.36)

but of ourse we want it to be ompletely tensorial.

The left-hand side of (4.36) does not obviously generalize to a tensor. The �rst hoie

might be to at the D'Alembertian 2 = r

�

r

�

on the metri g

��

, but this is automatially

zero by metri ompatibility. Fortunately, there is an obvious quantity whih is not zero
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and is onstruted from seond derivatives (and �rst derivatives) of the metri: the Riemann

tensor R

�

���

. It doesn't have the right number of indies, but we an ontrat it to form the

Rii tensor R

��

, whih does (and is symmetri to boot). It is therefore reasonable to guess

that the gravitational �eld equations are

R

��

= �T

��

; (4.37)

for some onstant �. In fat, Einstein did suggest this equation at one point. There is a prob-

lem, unfortunately, with onservation of energy. Aording to the Priniple of Equivalene,

the statement of energy-momentum onservation in urved spaetime should be

r

�

T

��

= 0 ; (4.38)

whih would then imply

r

�

R

��

= 0 : (4.39)

This is ertainly not true in an arbitrary geometry; we have seen from the Bianhi identity

(3.94) that

r

�

R

��

=

1

2

r

�

R : (4.40)

But our proposed �eld equation implies that R = �g

��

T

��

= �T , so taking these together

we have

r

�

T = 0 : (4.41)

The ovariant derivative of a salar is just the partial derivative, so (4.41) is telling us that T

is onstant throughout spaetime. This is highly implausible, sine T = 0 in vauum while

T > 0 in matter. We have to try harder.

(Atually we are heating slightly, in taking the equation r

�

T

��

= 0 so seriously. If as

we said, the equivalene priniple is only an approximate guide, we ould imagine that there

are nonzero terms on the right-hand side involving the urvature tensor. Later we will be

more preise and argue that they are stritly zero.)

Of ourse we don't have to try muh harder, sine we already know of a symmetri (0; 2)

tensor, onstruted from the Rii tensor, whih is automatially onserved: the Einstein

tensor

G

��

= R

��

�

1

2

Rg

��

; (4.42)

whih always obeys r

�

G

��

= 0. We are therefore led to propose

G

��

= �T

��

(4.43)

as a �eld equation for the metri. This equation satis�es all of the obvious requirements;

the right-hand side is a ovariant expression of the energy and momentum density in the
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form of a symmetri and onserved (0; 2) tensor, while the left-hand side is a symmetri and

onserved (0; 2) tensor onstruted from the metri and its �rst and seond derivatives. It

only remains to see whether it atually reprodues gravity as we know it.

To answer this, note that ontrating both sides of (4.43) yields (in four dimensions)

R = ��T ; (4.44)

and using this we an rewrite (4.43) as

R

��

= �(T

��

�

1

2

Tg

��

) : (4.45)

This is the same equation, just written slightly di�erently. We would like to see if it predits

Newtonian gravity in the weak-�eld, time-independent, slowly-moving-partiles limit. In

this limit the rest energy � = T

00

will be muh larger than the other terms in T

��

, so we

want to fous on the � = 0, � = 0 omponent of (4.45). In the weak-�eld limit, we write (in

aordane with (4.13) and (4.14))

g

00

= �1 + h

00

;

g

00

= �1� h

00

: (4.46)

The trae of the energy-momentum tensor, to lowest nontrivial order, is

T = g

00

T

00

= �T

00

: (4.47)

Plugging this into (4.45), we get

R

00

=

1

2

�T

00

: (4.48)

This is an equation relating derivatives of the metri to the energy density. To �nd the

expliit expression in terms of the metri, we need to evaluate R

00

= R

�

0�0

. In fat we only

need R

i

0i0

, sine R

0

000

= 0. We have

R

i

0j0

= �

j

�

i

00

� �

0

�

i

j0

+ �

i

j�

�

�

00

� �

i

0�

�

�

j0

: (4.49)

The seond term here is a time derivative, whih vanishes for stati �elds. The third and

fourth terms are of the form (�)

2

, and sine � is �rst-order in the metri perturbation these

ontribute only at seond order, and an be negleted. We are left with R

i

0j0

= �

j

�

i

00

. From

this we get

R

00

= R

i

0i0

= �

i

�

1

2

g

i�

(�

0

g

�0

+ �

0

g

0�

� �

�

g

00

)

�

= �

1

2

�

ij

�

i

�

j

h

00
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= �

1

2

r

2

h

00

: (4.50)

Comparing to (4.48), we see that the 00 omponent of (4.43) in the Newtonian limit predits

r

2

h

00

= ��T

00

: (4.51)

But this is exatly (4.36), if we set � = 8�G.

So our guess seems to have worked out. With the normalization �xed by omparison

with the Newtonian limit, we an present Einstein's equations for general relativity:

R

��

�

1

2

Rg

��

= 8�GT

��

: (4.52)

These tell us how the urvature of spaetime reats to the presene of energy-momentum.

Einstein, you may have heard, thought that the left-hand side was nie and geometrial,

while the right-hand side was somewhat less ompelling.

Einstein's equations may be thought of as seond-order di�erential equations for the

metri tensor �eld g

��

. There are ten independent equations (sine both sides are symmetri

two-index tensors), whih seems to be exatly right for the ten unknown funtions of the

metri omponents. However, the Bianhi identityr

�

G

��

= 0 represents four onstraints on

the funtions R

��

, so there are only six truly independent equations in (4.52). In fat this is

appropriate, sine if a metri is a solution to Einstein's equation in one oordinate system

x

�

it should also be a solution in any other oordinate system x

�

0

. This means that there are

four unphysial degrees of freedom in g

��

(represented by the four funtions x

�

0

(x

�

)), and

we should expet that Einstein's equations only onstrain the six oordinate-independent

degrees of freedom.

As di�erential equations, these are extremely ompliated; the Rii salar and tensor are

ontrations of the Riemann tensor, whih involves derivatives and produts of the Christo�el

symbols, whih in turn involve the inverse metri and derivatives of the metri. Furthermore,

the energy-momentum tensor T

��

will generally involve the metri as well. The equations

are also nonlinear, so that two known solutions annot be superposed to �nd a third. It

is therefore very diÆult to solve Einstein's equations in any sort of generality, and it is

usually neessary to make some simplifying assumptions. Even in vauum, where we set the

energy-momentum tensor to zero, the resulting equations (from (4.45))

R

��

= 0 (4.53)

an be very diÆult to solve. The most popular sort of simplifying assumption is that the

metri has a signi�ant degree of symmetry, and we will talk later on about how symmetries

of the metri make life easier.

The nonlinearity of general relativity is worth remarking on. In Newtonian gravity the

potential due to two point masses is simply the sum of the potentials for eah mass, but
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learly this does not arry over to general relativity (outside the weak-�eld limit). There is

a physial reason for this, namely that in GR the gravitational �eld ouples to itself. This

an be thought of as a onsequene of the equivalene priniple | if gravitation did not

ouple to itself, a \gravitational atom" (two partiles bound by their mutual gravitational

attration) would have a di�erent inertial mass (due to the negative binding energy) than

gravitational mass. From a partile physis point of view this an be expressed in terms of

Feynman diagrams. The eletromagneti interation between two eletrons an be thought

of as due to exhange of a virtual photon:

e

e-

-

photon

But there is no diagram in whih two photons exhange another photon between themselves;

eletromagnetism is linear. The gravitational interation, meanwhile, an be thought of

as due to exhange of a virtual graviton (a quantized perturbation of the metri). The

nonlinearity manifests itself as the fat that both eletrons and gravitons (and anything

else) an exhange virtual gravitons, and therefore exert a gravitational fore:

e

e-

-

graviton gravitons

There is nothing profound about this feature of gravity; it is shared by most gauge theories,

suh as quantum hromodynamis, the theory of the strong interations. (Eletromagnetism

is atually the exeption; the linearity an be traed to the fat that the relevant gauge group,

U(1), is abelian.) But it does represent a departure from the Newtonian theory. (Of ourse

this quantum mehanial language of Feynman diagrams is somewhat inappropriate for GR,

whih has not [yet℄ been suessfully quantized, but the diagrams are just a onvenient

shorthand for remembering what interations exist in the theory.)
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To inrease your on�dene that Einstein's equations as we have derived them are indeed

the orret �eld equations for the metri, let's see how they an be derived from a more

modern viewpoint, starting from an ation priniple. (In fat the equations were �rst derived

by Hilbert, not Einstein, and Hilbert did it using the ation priniple. But he had been

inspired by Einstein's previous papers on the subjet, and Einstein himself derived the

equations independently, so they are rightly named after Einstein. The ation, however, is

rightly alled the Hilbert ation.) The ation should be the integral over spaetime of a

Lagrange density (\Lagrangian" for short, although stritly speaking the Lagrangian is the

integral over spae of the Lagrange density):

S

H

=

Z

d

n

xL

H

: (4.54)

The Lagrange density is a tensor density, whih an be written as

p

�g times a salar. What

salars an we make out of the metri? Sine we know that the metri an be set equal to

its anonial form and its �rst derivatives set to zero at any one point, any nontrivial salar

must involve at least seond derivatives of the metri. The Riemann tensor is of ourse

made from seond derivatives of the metri, and we argued earlier that the only independent

salar we ould onstrut from the Riemann tensor was the Rii salar R. What we did not

show, but is nevertheless true, is that any nontrivial tensor made from the metri and its

�rst and seond derivatives an be expressed in terms of the metri and the Riemann tensor.

Therefore, the only independent salar onstruted from the metri, whih is no higher than

seond order in its derivatives, is the Rii salar. Hilbert �gured that this was therefore the

simplest possible hoie for a Lagrangian, and proposed

L

H

=

p

�gR : (4.55)

The equations of motion should ome from varying the ation with respet to the metri.

In fat let us onsider variations with respet to the inverse metri g

��

, whih are slightly

easier but give an equivalent set of equations. Using R = g

��

R

��

, in general we will have

ÆS =

Z

d

n

x

h

p

�gg

��

ÆR

��

+

p

�gR

��

Æg

��

+RÆ

p

�g

i

= (ÆS)

1

+ (ÆS)

2

+ (ÆS)

3

: (4.56)

The seond term (ÆS)

2

is already in the form of some expression times Æg

��

; let's examine

the others more losely.

Reall that the Rii tensor is the ontration of the Riemann tensor, whih is given by

R

�

���

= �

�

�

�

��

+ �

�

��

�

�

��

� (�$ �) : (4.57)

The variation of this with respet the metri an be found �rst varying the onnetion with

respet to the metri, and then substituting into this expression. Let us however onsider
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arbitrary variations of the onnetion, by replaing

�

�

��

! �

�

��

+ Æ�

�

��

: (4.58)

The variation Æ�

�

��

is the di�erene of two onnetions, and therefore is itself a tensor. We

an thus take its ovariant derivative,

r

�

(Æ�

�

��

) = �

�

(Æ�

�

��

) + �

�

��

Æ�

�

��

� �

�

��

Æ�

�

��

� �

�

��

Æ�

�

��

: (4.59)

Given this expression (and a small amount of labor) it is easy to show that

ÆR

�

���

= r

�

(Æ�

�

��

)�r

�

(Æ�

�

��

) : (4.60)

You an hek this yourself. Therefore, the ontribution of the �rst term in (4.56) to ÆS an

be written

(ÆS)

1

=

Z

d

n

x

p

�g g

��

h

r

�

(Æ�

�

��

)�r

�

(Æ�

�

��

)

i

=

Z

d

n

x

p

�g r

�

h

g

��

(Æ�

�

��

)� g

��

(Æ�

�

��

)

i

; (4.61)

where we have used metri ompatibility and relabeled some dummy indies. But now we

have the integral with respet to the natural volume element of the ovariant divergene of

a vetor; by Stokes's theorem, this is equal to a boundary ontribution at in�nity whih we

an set to zero by making the variation vanish at in�nity. (We haven't atually shown that

Stokes's theorem, as mentioned earlier in terms of di�erential forms, an be thought of this

way, but you an easily onvine yourself it's true.) Therefore this term ontributes nothing

to the total variation.

To make sense of the (ÆS)

3

term we need to use the following fat, true for any matrix

M :

Tr(lnM) = ln(detM) : (4.62)

Here, lnM is de�ned by exp(lnM) = M . (For numbers this is obvious, for matries it's a

little less straightforward.) The variation of this identity yields

Tr(M

�1

ÆM) =

1

detM

Æ(detM) : (4.63)

Here we have used the yli property of the trae to allow us to ignore the fat that M

�1

and ÆM may not ommute. Now we would like to apply this to the inverse metri,M = g

��

.

Then detM = g

�1

(where g = det g

��

), and

Æ(g

�1

) =

1

g

g

��

Æg

��

: (4.64)
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Now we an just plug in:

Æ

p

�g = Æ[(�g

�1

)

�1=2

℄

= �

1

2

(�g

�1

)

�3=2

Æ(�g

�1

)

= �

1

2

p

�gg

��

Æg

��

: (4.65)

Hearkening bak to (4.56), and remembering that (ÆS)

1

does not ontribute, we �nd

ÆS =

Z

d

n

x

p

�g

�

R

��

�

1

2

Rg

��

�

Æg

��

: (4.66)

This should vanish for arbitrary variations, so we are led to Einstein's equations in vauum:

1

p

�g

ÆS

Æg

��

= R

��

�

1

2

Rg

��

= 0 : (4.67)

The fat that this simple ation leads to the same vauum �eld equations as we had

previously arrived at by more informal arguments ertainly reassures us that we are doing

something right. What we would really like, however, is to get the non-vauum �eld equations

as well. That means we onsider an ation of the form

S =

1

8�G

S

H

+ S

M

; (4.68)

where S

M

is the ation for matter, and we have presiently normalized the gravitational

ation (although the proper normalization is somewhat onvention-dependent). Following

through the same proedure as above leads to

1

p

�g

ÆS

Æg

��

=

1

8�G

�

R

��

�

1

2

Rg

��

�

+

1

p

�g

ÆS

M

Æg

��

= 0 ; (4.69)

and we reover Einstein's equations if we an set

T

��

= �

1

p

�g

ÆS

M

Æg

��

: (4.70)

What makes us think that we an make suh an identi�ation? In fat (4.70) turns out to

be the best way to de�ne a symmetri energy-momentum tensor. The triky part is to show

that it is onserved, whih is in fat automatially true, but whih we will not justify until

the next setion.

We say that (4.70) provides the \best" de�nition of the energy-momentum tensor beause

it is not the only one you will �nd. In at Minkowski spae, there is an alternative de�ni-

tion whih is sometimes given in books on eletromagnetism or �eld theory. In this ontext
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energy-momentum onservation arises as a onsequene of symmetry of the Lagrangian un-

der spaetime translations. Noether's theorem states that every symmetry of a Lagrangian

implies the existene of a onservation law; invariane under the four spaetime translations

leads to a tensor S

��

whih obeys �

�

S

��

= 0 (four relations, one for eah value of �). The

details an be found in Wald or in any number of �eld theory books. Applying Noether's

proedure to a Lagrangian whih depends on some �elds  

i

and their �rst derivatives �

�

 

i

,

we obtain

S

��

=

ÆL

Æ(�

�

 

i

)

�

�

 

i

� �

��

L ; (4.71)

where a sum over i is implied. You an hek that this tensor is onserved by virtue of the

equations of motion of the matter �elds. S

��

often goes by the name \anonial energy-

momentum tensor"; however, there are a number of reasons why it is more onvenient for

us to use (4.70). First and foremost, (4.70) is in fat what appears on the right hand side of

Einstein's equations when they are derived from an ation, and it is not always possible to

generalize (4.71) to urved spaetime. But even in at spae (4.70) has its advantages; it is

manifestly symmetri, and also guaranteed to be gauge invariant, neither of whih is true for

(4.71). We will therefore stik with (4.70) as the de�nition of the energy-momentum tensor.

Sometimes it is useful to think about Einstein's equations without speifying the theory

of matter from whih T

��

is derived. This leaves us with a great deal of arbitrariness; onsider

for example the question \What metris obey Einstein's equations?" In the absene of some

onstraints on T

��

, the answer is \any metri at all"; simply take the metri of your hoie,

ompute the Einstein tensor G

��

for this metri, and then demand that T

��

be equal to G

��

.

(It will automatially be onserved, by the Bianhi identity.) Our real onern is with the

existene of solutions to Einstein's equations in the presene of \realisti" soures of energy

and momentum, whatever that means. The most ommon property that is demanded of

T

��

is that it represent positive energy densities | no negative masses are allowed. In a

loally inertial frame this requirement an be stated as � = T

00

� 0. To turn this into a

oordinate-independent statement, we ask that

T

��

V

�

V

�

� 0 ; for all timelike vetors V

�

: (4.72)

This is known as the Weak Energy Condition, or WEC. It seems like a fairly reasonable

requirement, and many of the important theorems about solutions to general relativity (suh

as the singularity theorems of Hawking and Penrose) rely on this ondition or something

very lose to it. Unfortunately it is not set in stone; indeed, it is straightforward to invent

otherwise respetable lassial �eld theories whih violate the WEC, and almost impossible

to invent a quantum �eld theory whih obeys it. Nevertheless, it is legitimate to assume

that the WEC holds in all but the most extreme onditions. (There are also stronger energy

onditions, but they are even less true than the WEC, and we won't dwell on them.)
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We have now justi�ed Einstein's equations in two di�erent ways: as the natural ovariant

generalization of Poisson's equation for the Newtonian gravitational potential, and as the

result of varying the simplest possible ation we ould invent for the metri. The rest of

the ourse will be an exploration of the onsequenes of these equations, but before we start

on that road let us briey explore ways in whih the equations ould be modi�ed. There

are an unountable number of suh ways, but we will onsider four di�erent possibilities:

the introdution of a osmologial onstant, higher-order terms in the ation, gravitational

salar �elds, and a nonvanishing torsion tensor.

The �rst possibility is the osmologial onstant; George Gamow has quoted Einstein as

alling this the biggest mistake of his life. Reall that in our searh for the simplest possible

ation for gravity we noted that any nontrivial salar had to be of at least seond order in

derivatives of the metri; at lower order all we an reate is a onstant. Although a onstant

does not by itself lead to very interesting dynamis, it has an important e�et if we add it

to the onventional Hilbert ation. We therefore onsider an ation given by

S =

Z

d

n

x

p

�g(R� 2�) ; (4.73)

where � is some onstant. The resulting �eld equations are

R

��

�

1

2

Rg

��

+ �g

��

= 0 ; (4.74)

and of ourse there would be an energy-momentum tensor on the right hand side if we had

inluded an ation for matter. � is the osmologial onstant; it was originally introdued

by Einstein after it beame lear that there were no solutions to his equations representing

a stati osmology (a universe unhanging with time on large sales) with a nonzero matter

ontent. If the osmologial onstant is tuned just right, it is possible to �nd a stati solution,

but it is unstable to small perturbations. Furthermore, one Hubble demonstrated that the

universe is expanding, it beame less important to �nd stati solutions, and Einstein rejeted

his suggestion. Like Rasputin, however, the osmologial onstant has proven diÆult to kill

o�. If we like we an move the additional term in (4.74) to the right hand side, and think of

it as a kind of energy-momentum tensor, with T

��

= ��g

��

(it is automatially onserved

by metri ompatibility). Then � an be interpreted as the \energy density of the vauum,"

a soure of energy and momentum that is present even in the absene of matter �elds. This

interpretation is important beause quantum �eld theory predits that the vauum should

have some sort of energy and momentum. In ordinary quantum mehanis, an harmoni

osillator with frequeny ! and minimum lassial energy E

0

= 0 upon quantization has a

ground state with energy E

0

=

1

2

�h!. A quantized �eld an be thought of as a olletion of

an in�nite number of harmoni osillators, and eah mode ontributes to the ground state

energy. The result is of ourse in�nite, and must be appropriately regularized, for example
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by introduing a uto� at high frequenies. The �nal vauum energy, whih is the regularized

sum of the energies of the ground state osillations of all the �elds of the theory, has no good

reason to be zero and in fat would be expeted to have a natural sale

� � m

4

P

; (4.75)

where the Plank mass m

P

is approximately 10

19

GeV, or 10

�5

grams. Observations of the

universe on large sales allow us to onstrain the atual value of �, whih turns out to be

smaller than (4.75) by at least a fator of 10

120

. This is the largest known disrepany between

theoretial estimate and observational onstraint in physis, and onvines many people that

the \osmologial onstant problem" is one of the most important unsolved problems today.

On the other hand the observations do not tell us that � is stritly zero, and in fat allow

values that an have important onsequenes for the evolution of the universe. This mistake

of Einstein's therefore ontinues to bedevil both physiists, who would like to understand

why it is so small, and astronomers, who would like to determine whether it is really small

enough to be ignored.

A somewhat less intriguing generalization of the Hilbert ation would be to inlude salars

of more than seond order in derivatives of the metri. We ould imagine an ation of the

form

S =

Z

d

n

x

p

�g(R+ �

1

R

2

+ �

2

R

��

R

��

+ �

3

g

��

r

�

Rr

�

R+ � � �) ; (4.76)

where the �'s are oupling onstants and the dots represent every other salar we an make

from the urvature tensor, its ontrations, and its derivatives. Traditionally, suh terms

have been negleted on the reasonable grounds that they merely ompliate a theory whih

is already both aesthetially pleasing and empirially suessful. However, there are at

least three more substantive reasons for this neglet. First, as we shall see below, Einstein's

equations lead to a well-posed initial value problem for the metri, in whih \oordinates" and

\momenta" spei�ed at an initial time an be used to predit future evolution. With higher-

derivative terms, we would require not only those data, but also some number of derivatives

of the momenta. Seond, the main soure of dissatisfation with general relativity on the part

of partile physiists is that it annot be renormalized (as far as we know), and Lagrangians

with higher derivatives tend generally to make theories less renormalizable rather than more.

Third, by the same arguments we used above when speaking about the limitations of the

priniple of equivalene, the extra terms in (4.76) should be suppressed (by powers of the

Plank mass to some power) relative to the usual Hilbert term, and therefore would not be

expeted to be of any pratial importane to the low-energy world. None of these reasons

are ompletely persuasive, and indeed people ontinue to onsider suh theories, but for the

most part these models do not attrat a great deal of attention.

A set of models whih does attrat attention are known as salar-tensor theories of

gravity, sine they involve both the metri tensor g

��

and a fundamental salar �eld, �. The
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ation an be written

S =

Z

d

n

x

p

�g

�

f(�)R +

1

2

g

��

(�

�

�)(�

�

�)� V (�)

�

; (4.77)

where f(�) and V (�) are funtions whih de�ne the theory. Reall from (4.68) that the

oeÆient of the Rii salar in onventional GR is proportional to the inverse of Newton's

onstant G. In salar-tensor theories, then, where this oeÆient is replaed by some funtion

of a �eld whih an vary throughout spaetime, the \strength" of gravity (as measured by

the loal value of Newton's onstant) will be di�erent from plae to plae and time to time.

In fat the most famous salar-tensor theory, invented by Brans and Dike and now named

after them, was inspired by a suggestion of Dira's that the gravitational onstant varies

with time. Dira had notied that there were some interesting numerial oinidenes one

ould disover by taking ombinations of osmologial numbers suh as the Hubble onstant

H

0

(a measure of the expansion rate of the universe) and typial partile-physis parameters

suh as the mass of the pion, m

�

. For example,

m

3

�

H

0

�

G

�h

2

: (4.78)

If we assume for the moment that this relation is not simply an aident, we are faed with

the problem that the Hubble \onstant" atually hanges with time (in most osmologial

models), while the other quantities onventionally do not. Dira therefore proposed that in

fat G varied with time, in suh a way as to maintain (4.78); satisfying this proposal was

the motivation of Brans and Dike. These days, experimental test of general relativity are

suÆiently preise that we an state with on�dene that, if Brans-Dike theory is orret,

the predited hange in G over spae and time must be very small, muh slower than that

neessary to satisfy Dira's hypothesis. (See Weinberg for details on Brans-Dike theory

and experimental tests.) Nevertheless there is still a great deal of work being done on other

kinds of salar-tensor theories, whih turn out to be vital in superstring theory and may

have important onsequenes in the very early universe.

As a �nal alternative to general relativity, we should mention the possibility that the

onnetion really is not derived from the metri, but in fat has an independent existene as a

fundamental �eld. We will leave it as an exerise for you to show that it is possible to onsider

the onventional ation for general relativity but treat it as a funtion of both the metri

g

��

and a torsion-free onnetion �

�

��

, and the equations of motion derived from varying

suh an ation with respet to the onnetion imply that �

�

��

is atually the Christo�el

onnetion assoiated with g

��

. We ould drop the demand that the onnetion be torsion-

free, in whih ase the torsion tensor ould lead to additional propagating degrees of freedom.

Without going into details, the basi reason why suh theories do not reeive muh attention

is simply beause the torsion is itself a tensor; there is nothing to distinguish it from other,
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\non-gravitational" tensor �elds. Thus, we do not really lose any generality by onsidering

theories of torsion-free onnetions (whih lead to GR) plus any number of tensor �elds,

whih we an name what we like.

With the possibility in mind that one of these alternatives (or, more likely, something

we have not yet thought of) is atually realized in nature, for the rest of the ourse we will

work under the assumption that general relativity as based on Einstein's equations or the

Hilbert ation is the orret theory, and work out its onsequenes. These onsequenes, of

ourse, are onstituted by the solutions to Einstein's equations for various soures of energy

and momentum, and the behavior of test partiles in these solutions. Before onsidering

spei� solutions in detail, lets look more abstratly at the initial-value problem in general

relativity.

In lassial Newtonian mehanis, the behavior of a single partile is of ourse governed

by f = ma. If the partile is moving under the inuene of some potential energy �eld �(x),

then the fore is f = �r�, and the partile obeys

m

d

2

x

i

dt

2

= ��

i

� : (4.79)

This is a seond-order di�erential equation for x

i

(t), whih we an reast as a system of two

oupled �rst-order equations by introduing the momentum p:

dp

i

dt

= ��

i

�

dx

i

dt

=

1

m

p

i

: (4.80)

The initial-value problem is simply the proedure of speifying a \state" (x

i

; p

i

) whih serves

as a boundary ondition with whih (4.80) an be uniquely solved. You may think of (4.80)

as allowing you, one you are given the oordinates and momenta at some time t, to evolve

them forward an in�nitesimal amount to a time t+ Æt, and iterate this proedure to obtain

the entire solution.

We would like to formulate the analogous problem in general relativity. Einstein's equa-

tions G

��

= 8�GT

��

are of ourse ovariant; they don't single out a preferred notion of \time"

through whih a state an evolve. Nevertheless, we an by hand pik a spaelike hypersurfae

(or \slie") �, speify initial data on that hypersurfae, and see if we an evolve uniquely

from it to a hypersurfae in the future. (\Hyper" beause a onstant-time slie in four di-

mensions will be three-dimensional, whereas \surfaes" are onventionally two-dimensional.)

This proess does violene to the manifest ovariane of the theory, but if we are areful we

should wind up with a formulation that is equivalent to solving Einstein's equations all at

one throughout spaetime.

Sine the metri is the fundamental variable, our �rst guess is that we should onsider

the values g

��

j

�

of the metri on our hypersurfae to be the \oordinates" and the time
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Initial DataΣ

t

derivatives �

t

g

��

j

�

(with respet to some spei�ed time oordinate) to be the \momenta",

whih together speify the state. (There will also be oordinates and momenta for the matter

�elds, whih we will not onsider expliitly.) In fat the equations G

��

= 8�GT

��

do involve

seond derivatives of the metri with respet to time (sine the onnetion involves �rst

derivatives of the metri and the Einstein tensor involves �rst derivatives of the onnetion),

so we seem to be on the right trak. However, the Bianhi identity tells us that r

�

G

��

= 0.

We an rewrite this equation as

�

0

G

0�

= ��

i

G

i�

� �

�

��

G

��

� �

�

��

G

��

: (4.81)

A lose look at the right hand side reveals that there are no third-order time derivatives;

therefore there annot be any on the left hand side. Thus, although G

��

as a whole involves

seond-order time derivatives of the metri, the spei� omponents G

0�

do not. Of the ten

independent omponents in Einstein's equations, the four represented by

G

0�

= 8�GT

0�

(4.82)

annot be used to evolve the initial data (g

��

; �

t

g

��

)

�

. Rather, they serve as onstraints

on this initial data; we are not free to speify any ombination of the metri and its time

derivatives on the hypersurfae �, sine they must obey the relations (4.82). The remaining

equations,

G

ij

= 8�GT

ij

(4.83)

are the dynamial evolution equations for the metri. Of ourse, these are only six equations

for the ten unknown funtions g

��

(x

�

), so the solution will inevitably involve a fourfold

ambiguity. This is simply the freedom that we have already mentioned, to hoose the four

oordinate funtions throughout spaetime.

It is a straightforward but unenlightening exerise to sift through (4.83) to �nd that

not all seond time derivatives of the metri appear. In fat we �nd that �

2

t

g

ij

appears in

(4.83), but not �

2

t

g

0�

. Therefore a \state" in general relativity will onsist of a spei�ation
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of the spaelike omponents of the metri g

ij

j

�

and their �rst time derivatives �

t

g

ij

j

�

on the

hypersurfae �, from whih we an determine the future evolution using (4.83), up to an

unavoidable ambiguity in �xing the remaining omponents g

0�

. The situation is preisely

analogous to that in eletromagnetism, where we know that no amount of initial data an

suÆe to determine the evolution uniquely sine there will always be the freedom to perform a

gauge transformation A

�

! A

�

+�

�

�. In general relativity, then, oordinate transformations

play a role reminisent of gauge transformations in eletromagnetism, in that they introdue

ambiguity into the time evolution.

One way to ope with this problem is to simply \hoose a gauge." In eletromagnetism

this means to plae a ondition on the vetor potential A

�

, whih will restrit our freedom

to perform gauge transformations. For example we an hoose Lorentz gauge, in whih

r

�

A

�

= 0, or temporal gauge, in whih A

0

= 0. We an do a similar thing in general

relativity, by �xing our oordinate system. A popular hoie is harmoni gauge (also

known as Lorentz gauge and a host of other names), in whih

2x

�

= 0 : (4.84)

Here 2 = r

�

r

�

is the ovariant D'Alembertian, and it is ruial to realize when we take

the ovariant derivative that the four funtions x

�

are just funtions, not omponents of a

vetor. This ondition is therefore simply

0 = 2x

�

= g

��

�

�

�

�

x

�

� g

��

�

�

��

�

�

x

�

= �g

��

�

�

��

: (4.85)

In at spae, of ourse, Cartesian oordinates (in whih �

�

��

= 0) are harmoni oordi-

nates. (As a general priniple, any funtion f whih satis�es 2f = 0 is alled an \harmoni

funtion.")

To see that this hoie of oordinates suessfully �xes our gauge freedom, let's rewrite

the ondition (4.84) in a somewhat simpler form. We have

g

��

�

�

��

=

1

2

g

��

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) ; (4.86)

from the de�nition of the Christo�el symbols. Meanwhile, from �

�

(g

��

g

��

) = �

�

Æ

�

�

= 0 we

have

g

��

�

�

g

��

= �g

��

�

�

g

��

: (4.87)

Also, from our previous exploration of the variation of the determinant of the metri (4.65),

we have

1

2

g

��

�

�

g

��

= �

1

p

�g

�

�

p

�g : (4.88)
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Putting it all together, we �nd that (in general),

g

��

�

�

��

=

1

p

�g

�

�

(

p

�gg

��

) : (4.89)

The harmoni gauge ondition (4.85) therefore is equivalent to

�

�

(

p

�gg

��

) = 0 : (4.90)

Taking the partial derivative of this with respet to t = x

0

yields

�

2

�t

2

(

p

�gg

0�

) = �

�

�x

i

"

�

�t

(

p

�gg

i�

)

#

: (4.91)

This ondition represents a seond-order di�erential equation for the previously unon-

strained metri omponents g

0�

, in terms of the given initial data. We have therefore

sueeded in �xing our gauge freedom, in that we an now solve for the evolution of the

entire metri in harmoni oordinates. (At least loally; we have been glossing over the fat

our gauge hoie may not be well-de�ned globally, and we would have to resort to working

in pathes as usual. The same problem appears in gauge theories in partile physis.) Note

that we still have some freedom remaining; our gauge ondition (4.84) restrits how the

oordinates streth from our initial hypersurfae � throughout spaetime, but we an still

hoose oordinates x

i

on � however we like. This orresponds to the fat that making a

oordinate transformation x

�

! x

�

+ Æ

�

, with 2Æ

�

= 0, does not violate the harmoni gauge

ondition.

We therefore have a well-de�ned initial value problem for general relativity; a state is

spei�ed by the spaelike omponents of the metri and their time derivatives on a spaelike

hypersurfae �; given these, the spaelike omponents (4.83) of Einstein's equations allow

us to evolve the metri forward in time, up to an ambiguity in oordinate hoie whih

may be resolved by hoie of gauge. We must keep in mind that the initial data are not

arbitrary, but must obey the onstraints (4.82). (One we impose the onstraints on some

spaelike hypersurfae, the equations of motion guarantee that they remain satis�ed, as you

an hek.) The onstraints serve a useful purpose, of guaranteeing that the result remains

spaetime ovariant after we have split our manifold into \spae" and \time." Spei�ally,

the G

i0

= 8�GT

i0

onstraint implies that the evolution is independent of our hoie of

oordinates on �, while G

00

= 8�GT

00

enfores invariane under di�erent ways of sliing

spaetime into spaelike hypersurfaes.

One we have seen how to ast Einstein's equations as an initial value problem, one issue

of ruial importane is the existene of solutions to the problem. That is, one we have

spei�ed a spaelike hypersurfae with initial data, to what extent an we be guaranteed

that a unique spaetime will be determined? Although one an do a great deal of hard work
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Σ

to answer this question with some preision, it is fairly simple to get a handle on the ways

in whih a well-de�ned solution an fail to exist, whih we now onsider.

It is simplest to �rst onsider the problem of evolving matter �elds on a �xed bakground

spaetime, rather than the evolution of the metri itself. We therefore onsider a spaelike

hypersurfae � in some manifold M with �xed metri g

��

, and furthermore look at some

onneted subset S in �. Our guiding priniple will be that no signals an travel faster than

the speed of light; therefore \information" will only ow along timelike or null trajetories

(not neessarily geodesis). We de�ne the future domain of dependene of S, denoted

D

+

(S), as the set of all points p suh that every past-moving, timelike or null, inextendible

urve through p must interset S. (\Inextendible" just means that the urve goes on forever,

not ending at some �nite point.) We interpret this de�nition in suh a way that S itself is a

subset ofD

+

(S). (Of ourse a rigorous formulation does not require additional interpretation

over and above the de�nitions, but we are not being as rigorous as we ould be right now.)

Similarly, we de�ne the past domain of dependene D

�

(S) in the same way, but with \past-

moving" replaed by \future-moving." Generally speaking, some points in M will be in one

of the domains of dependene, and some will be outside; we de�ne the boundary of D

+

(S)

to be the future Cauhy horizon H

+

(S), and likewise the boundary of D

�

(S) to be the

past Cauhy horizon H

�

(S). You an onvine yourself that they are both null surfaes.

Σ S

D  (S)

H  (S) D  (S)

H  (S)
+

- -

+
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The usefulness of these de�nitions should be apparent; if nothing moves faster than light,

than signals annot propagate outside the light one of any point p. Therefore, if every

urve whih remains inside this light one must interset S, then information spei�ed on S

should be suÆient to predit what the situation is at p. (That is, initial data for matter

�elds given on S an be used to solve for the value of the �elds at p.) The set of all points

for whih we an predit what happens by knowing what happens on S is simply the union

D

+

(S) [D

�

(S).

We an easily extend these ideas from the subset S to the entire hypersurfae �. The

important point is that D

+

(�) [D

�

(�) might fail to be all of M , even if � itself seems like

a perfetly respetable hypersurfae that extends throughout spae. There are a number

of ways in whih this an happen. One possibility is that we have just hosen a \bad"

hypersurfae (although it is hard to give a general presription for when a hypersurfae is

bad in this sense). Consider Minkowski spae, and a spaelike hypersurfae � whih remains

to the past of the light one of some point.

Σ

D  (   )Σ
+

In this ase � is a nie spaelike surfae, but it is lear that D

+

(�) ends at the light one,

and we annot use information on � to predit what happens throughout Minkowski spae.

Of ourse, there are other surfaes we ould have piked for whih the domain of dependene

would have been the entire manifold, so this doesn't worry us too muh.

A somewhat more nontrivial example is known as Misner spae. This is a two-

dimensional spaetime with the topology of R

1

� S

1

, and a metri for whih the light ones

progressively tilt as you go forward in time. Past a ertain point, it is possible to travel on a

timelike trajetory whih wraps around the S

1

and omes bak to itself; this is known as a

losed timelike urve. If we had spei�ed a surfae � to this past of this point, then none

of the points in the region ontaining losed timelike urves are in the domain of dependene

of �, sine the losed timelike urves themselves do not interset �. This is obviously a worse

problem than the previous one, sine a well-de�ned initial value problem does not seem to
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Σ

identify

closed
timelike
curve

Misner
space

exist in this spaetime. (Atually problems like this are the subjet of some urrent researh

interest, so I won't laim that the issue is settled.)

A �nal example is provided by the existene of singularities, points whih are not in the

manifold even though they an be reahed by travelling along a geodesi for a �nite distane.

Typially these our when the urvature beomes in�nite at some point; if this happens,

the point an no longer be said to be part of the spaetime. Suh an ourrene an lead to

the emergene of a Cauhy horizon | a point p whih is in the future of a singularity annot

be in the domain of dependene of a hypersurfae to the past of the singularity, beause

there will be urves from p whih simply end at the singularity.

Σ

Σ

D  (   )

H  (   )

Σ
+

+

All of these obstales an also arise in the initial value problem for GR, when we try to

evolve the metri itself from initial data. However, they are of di�erent degrees of trouble-
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someness. The possibility of piking a \bad" initial hypersurfae does not arise very often,

espeially sine most solutions are found globally (by solving Einstein's equations throughout

spaetime). The one situation in whih you have to be areful is in numerial solution of Ein-

stein's equations, where a bad hoie of hypersurfae an lead to numerial diÆulties even

if in priniple a omplete solution exists. Closed timelike urves seem to be something that

GR works hard to avoid | there are ertainly solutions whih ontain them, but evolution

from generi initial data does not usually produe them. Singularities, on the other hand,

are pratially unavoidable. The simple fat that the gravitational fore is always attrative

tends to pull matter together, inreasing the urvature, and generally leading to some sort of

singularity. This is something whih we apparently must learn to live with, although there

is some hope that a well-de�ned theory of quantum gravity will eliminate the singularities

of lassial GR.
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5 More Geometry

With an understanding of how the laws of physis adapt to urved spaetime, it is undeniably

tempting to start in on appliations. However, a few extra mathematial tehniques will

simplify our task a great deal, so we will pause briey to explore the geometry of manifolds

some more.

When we disussed manifolds in setion 2, we introdued maps between two di�erent

manifolds and how maps ould be omposed. We now turn to the use of suh maps in arrying

along tensor �elds from one manifold to another. We therefore onsider two manifolds M

and N , possibly of di�erent dimension, with oordinate systems x

�

and y

�

, respetively. We

imagine that we have a map � :M ! N and a funtion f : N ! R.

M

x

f = f

f

φ

R

R

R
m n

µ yα

N

*
φ φ

It is obvious that we an ompose � with f to onstrut a map (f Æ �) : M ! R, whih is

simply a funtion on M . Suh a onstrution is suÆiently useful that it gets its own name;

we de�ne the pullbak of f by �, denoted �

�

f , by

�

�

f = (f Æ �) : (5.1)

The name makes sense, sine we think of �

�

as \pulling bak" the funtion f from N to M .

We an pull funtions bak, but we annot push them forward. If we have a funtion

g :M ! R, there is no way we an ompose g with � to reate a funtion on N ; the arrows

don't �t together orretly. But reall that a vetor an be thought of as a derivative operator

that maps smooth funtions to real numbers. This allows us to de�ne the pushforward of

129
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a vetor; if V (p) is a vetor at a point p on M , we de�ne the pushforward vetor �

�

V at the

point �(p) on N by giving its ation on funtions on N :

(�

�

V )(f) = V (�

�

f) : (5.2)

So to push forward a vetor �eld we say \the ation of �

�

V on any funtion is simply the

ation of V on the pullbak of that funtion."

This is a little abstrat, and it would be nie to have a more onrete desription. We

know that a basis for vetors on M is given by the set of partial derivatives �

�

=

�

�x

�

, and

a basis on N is given by the set of partial derivatives �

�

=

�

�y

�

. Therefore we would like

to relate the omponents of V = V

�

�

�

to those of (�

�

V ) = (�

�

V )

�

�

�

. We an �nd the

sought-after relation by applying the pushed-forward vetor to a test funtion and using the

hain rule (2.3):

(�

�

V )

�

�

�

f = V

�

�

�

(�

�

f)

= V

�

�

�

(f Æ �)

= V

�

�y

�

�x

�

�

�

f : (5.3)

This simple formula makes it irresistible to think of the pushforward operation �

�

as a matrix

operator, (�

�

V )

�

= (�

�

)

�

�

V

�

, with the matrix being given by

(�

�

)

�

�

=

�y

�

�x

�

: (5.4)

The behavior of a vetor under a pushforward thus bears an unmistakable resemblane to the

vetor transformation law under hange of oordinates. In fat it is a generalization, sine

when M and N are the same manifold the onstrutions are (as we shall disuss) idential;

but don't be fooled, sine in general � and � have di�erent allowed values, and there is no

reason for the matrix �y

�

=�x

�

to be invertible.

It is a rewarding exerise to onvine yourself that, although you an push vetors forward

fromM to N (given a map � :M ! N), you annot in general pull them bak | just keep

trying to invent an appropriate onstrution until the futility of the attempt beomes lear.

Sine one-forms are dual to vetors, you should not be surprised to hear that one-forms an

be pulled bak (but not in general pushed forward). To do this, remember that one-forms

are linear maps from vetors to the real numbers. The pullbak �

�

! of a one-form ! on N

an therefore be de�ned by its ation on a vetor V on M , by equating it with the ation of

! itself on the pushforward of V :

(�

�

!)(V ) = !(�

�

V ) : (5.5)

One again, there is a simple matrix desription of the pullbak operator on forms, (�

�

!)

�

=

(�

�

)

�

�

!

�

, whih we an derive using the hain rule. It is given by

(�

�

)

�

�

=

�y

�

�x

�

: (5.6)
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That is, it is the same matrix as the pushforward (5.4), but of ourse a di�erent index is

ontrated when the matrix ats to pull bak one-forms.

There is a way of thinking about why pullbaks and pushforwards work on some objets

but not others, whih may or may not be helpful. If we denote the set of smooth funtions

on M by F(M), then a vetor V (p) at a point p on M (i.e., an element of the tangent spae

T

p

M) an be thought of as an operator from F(M) to R. But we already know that the

pullbak operator on funtions maps F(N) to F(M) (just as � itself maps M to N , but

in the opposite diretion). Therefore we an de�ne the pushforward �

�

ating on vetors

simply by omposing maps, as we �rst de�ned the pullbak of funtions:

F F(M) (N)

φ*(V(p)) = V(p) φ

R

φ

V(p)
*

*

Similarly, if T

q

N is the tangent spae at a point q on N , then a one-form ! at q (i.e., an

element of the otangent spae T

�

q

N) an be thought of as an operator from T

q

N to R. Sine

the pushforward �

�

maps T

p

M to T

�(p)

N , the pullbak �

�

of a one-form an also be thought

of as mere omposition of maps:

T  Mp φ(p)T     N

φ*= ω(ω)
*

φ

φ*

ω

R

If this is not helpful, don't worry about it. But do keep straight what exists and what

doesn't; the atual onepts are simple, it's just remembering whih map goes what way

that leads to onfusion.

You will reall further that a (0; l) tensor | one with l lower indies and no upper ones

| is a linear map from the diret produt of l vetors to R. We an therefore pull bak

not only one-forms, but tensors with an arbitrary number of lower indies. The de�nition is

simply the ation of the original tensor on the pushed-forward vetors:

(�

�

T )(V

(1)

; V

(2)

; : : : ; V

(l)

) = T (�

�

V

(1)

; �

�

V

(2)

; : : : ; �

�

V

(l)

) ; (5.7)
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where T

�

1

����

l

is a (0; l) tensor on N . We an similarly push forward any (k; 0) tensor S

�

1

����

k

by ating it on pulled-bak one-forms:

(�

�

S)(!

(1)

; !

(2)

; : : : ; !

(k)

) = S(�

�

!

(1)

; �

�

!

(2)

; : : : ; �

�

!

(k)

) : (5.8)

Fortunately, the matrix representations of the pushforward (5.4) and pullbak (5.6) extend to

the higher-rank tensors simply by assigning one matrix to eah index; thus, for the pullbak

of a (0; l) tensor, we have

(�

�

T )

�

1

����

l

=

�y

�

1

�x

�

1

� � �

�y

�

l

�x

�

l

T

�

1

����

l

; (5.9)

while for the pushforward of a (k; 0) tensor we have

(�

�

S)

�

1

����

k

=

�y

�

1

�x

�

1

� � �

�y

�

k

�x

�

k

S

�

1

����

k

: (5.10)

Our omplete piture is therefore:

φ*

φ
*(  )

(  )k

0 (  )k

0

l l

0 (  )0

φ

NM

Note that tensors with both upper and lower indies an generally be neither pushed forward

nor pulled bak.

This mahinery beomes somewhat less imposing one we see it at work in a simple

example. One ommon ourrene of a map between two manifolds is when M is atually a

submanifold of N ; then there is an obvious map from M to N whih just takes an element

of M to the \same" element of N . Consider our usual example, the two-sphere embedded in

R

3

, as the lous of points a unit distane from the origin. If we put oordinates x

�

= (�; �)

on M = S

2

and y

�

= (x; y; z) on N = R

3

, the map � :M ! N is given by

�(�; �) = (sin � os �; sin � sin�; os �) : (5.11)

In the past we have onsidered the metri ds

2

= dx

2

+ dy

2

+ dz

2

on R

3

, and said that it

indues a metri d�

2

+ sin

2

� d�

2

on S

2

, just by substituting (5.11) into this at metri on
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R

3

. We didn't really justify suh a statement at the time, but now we an do so. (Of ourse

it would be easier if we worked in spherial oordinates on R

3

, but doing it the hard way is

more illustrative.) The matrix of partial derivatives is given by

�y

�

�x

�

=

�

os � os � os � sin� � sin �

� sin � sin� sin � os � 0

�

: (5.12)

The metri on S

2

is obtained by simply pulling bak the metri from R

3

,

(�

�

g)

��

=

�y

�

�x

�

�y

�

�x

�

g

��

=

�

1 0

0 sin

2

�

�

; (5.13)

as you an easily hek. One again, the answer is the same as you would get by naive

substitution, but now we know why.

We have been areful to emphasize that a map � :M ! N an be used to push ertain

things forward and pull other things bak. The reason why it generally doesn't work both

ways an be traed to the fat that � might not be invertible. If � is invertible (and both �

and �

�1

are smooth, whih we always impliitly assume), then it de�nes a di�eomorphism

between M and N . In this ase M and N are the same abstrat manifold. The beauty of

di�eomorphisms is that we an use both � and �

�1

to move tensors from M to N ; this will

allow us to de�ne the pushforward and pullbak of arbitrary tensors. Spei�ally, for a (k; l)

tensor �eld T

�

1

����

k

�

1

����

l

on M , we de�ne the pushforward by

(�

�

T )(!

(1)

; : : : ; !

(k)

; V

(1)

; : : : ; V

(l)

) = T (�

�

!

(1)

; : : : ; �

�

!

(k)

; [�

�1

℄

�

V

(1)

; : : : ; [�

�1

℄

�

V

(l)

) ;

(5.14)

where the !

(i)

's are one-forms on N and the V

(i)

's are vetors on N . In omponents this

beomes

(�

�

T )

�

1

����

k

�

1

����

l

=

�y

�

1

�x

�

1

� � �

�y

�

k

�x

�

k

�x

�

1

�y

�

1

� � �

�x

�

l

�y

�

l

T

�

1

����

k

�

1

����

l

: (5.15)

The appearane of the inverse matrix �x

�

=�y

�

is legitimate beause � is invertible. Note

that we ould also de�ne the pullbak in the obvious way, but there is no need to write

separate equations beause the pullbak �

�

is the same as the pushforward via the inverse

map, [�

�1

℄

�

.

We are now in a position to explain the relationship between di�eomorphisms and oordi-

nate transformations. The relationship is that they are two di�erent ways of doing preisely

the same thing. If you like, di�eomorphisms are \ative oordinate transformations", while

traditional oordinate transformations are \passive." Consider an n-dimensional manifold

M with oordinate funtions x

�

: M ! R

n

. To hange oordinates we an either simply

introdue new funtions y

�

: M ! R

n

(\keep the manifold �xed, hange the oordinate
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maps"), or we ould just as well introdue a di�eomorphism � : M ! M , after whih the

oordinates would just be the pullbaks (�

�

x)

�

: M ! R

n

(\move the points on the man-

ifold, and then evaluate the oordinates of the new points"). In this sense, (5.15) really is

the tensor transformation law, just thought of from a di�erent point of view.

φ
*

φ

n

(    x)

x

y

µ

µ

µ

R

M

Sine a di�eomorphism allows us to pull bak and push forward arbitrary tensors, it

provides another way of omparing tensors at di�erent points on a manifold. Given a di�eo-

morphism � :M !M and a tensor �eld T

�

1

����

k

�

1

����

l

(x), we an form the di�erene between

the value of the tensor at some point p and �

�

[T

�

1

����

k

�

1

����

l

(�(p))℄, its value at �(p) pulled

bak to p. This suggests that we ould de�ne another kind of derivative operator on tensor

�elds, one whih ategorizes the rate of hange of the tensor as it hanges under the di�eo-

morphism. For that, however, a single disrete di�eomorphism is insuÆient; we require a

one-parameter family of di�eomorphisms, �

t

. This family an be thought of as a smooth

map R�M !M , suh that for eah t 2 R �

t

is a di�eomorphism and �

s

Æ �

t

= �

s+t

. Note

that this last ondition implies that �

0

is the identity map.

One-parameter families of di�eomorphisms an be thought of as arising from vetor �elds

(and vie-versa). If we onsider what happens to the point p under the entire family �

t

, it is

lear that it desribes a urve in M ; sine the same thing will be true of every point on M ,

these urves �ll the manifold (although there an be degeneraies where the di�eomorphisms

have �xed points). We an de�ne a vetor �eld V

�

(x) to be the set of tangent vetors to

eah of these urves at every point, evaluated at t = 0. An example on S

2

is provided by

the di�eomorphism �

t

(�; �) = (�; �+ t).

We an reverse the onstrution to de�ne a one-parameter family of di�eomorphisms

from any vetor �eld. Given a vetor �eld V

�

(x), we de�ne the integral urves of the

vetor �eld to be those urves x

�

(t) whih solve

dx

�

dt

= V

�

: (5.16)

Note that this familiar-looking equation is now to be interpreted in the opposite sense from

our usual way | we are given the vetors, from whih we de�ne the urves. Solutions to
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φ

(5.16) are guaranteed to exist as long as we don't do anything silly like run into the edge of

our manifold; any standard di�erential geometry text will have the proof, whih amounts to

�nding a lever oordinate system in whih the problem redues to the fundamental theorem

of ordinary di�erential equations. Our di�eomorphisms �

t

represent \ow down the integral

urves," and the assoiated vetor �eld is referred to as the generator of the di�eomorphism.

(Integral urves are used all the time in elementary physis, just not given the name. The

\lines of magneti ux" traed out by iron �lings in the presene of a magnet are simply the

integral urves of the magneti �eld vetor B.)

Given a vetor �eld V

�

(x), then, we have a family of di�eomorphisms parameterized by

t, and we an ask how fast a tensor hanges as we travel down the integral urves. For eah

t we an de�ne this hange as

�

t

T

�

1

����

k

�

1

����

l

(p) = �

t�

[T

�

1

����

k

�

1

����

l

(�

t

(p))℄� T

�

1

����

k

�

1

����

l

(p) : (5.17)

Note that both terms on the right hand side are tensors at p.

T[   (p)]φt

(p)

p

[T(    (p))]φ
t tφ
*

T(p)

x  (t)µ

φ
t

M

We then de�ne the Lie derivative of the tensor along the vetor �eld as

$

V

T

�

1

����

k

�

1

����

l

= lim

t!0

�

�

t

T

�

1

����

k

�

1

����

l

t

�

: (5.18)
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The Lie derivative is a map from (k; l) tensor �elds to (k; l) tensor �elds, whih is manifestly

independent of oordinates. Sine the de�nition essentially amounts to the onventional

de�nition of an ordinary derivative applied to the omponent funtions of the tensor, it

should be lear that it is linear,

$

V

(aT + bS ) = a$

V

T + b$

V

S ; (5.19)

and obeys the Leibniz rule,

$

V

(T 
 S ) = ($

V

T )
 S + T 
 ($

V

S ) ; (5.20)

where S and T are tensors and a and b are onstants. The Lie derivative is in fat a more

primitive notion than the ovariant derivative, sine it does not require spei�ation of a

onnetion (although it does require a vetor �eld, of ourse). A moment's reetion shows

that it redues to the ordinary derivative on funtions,

$

V

f = V (f ) = V

�

�

�

f : (5.21)

To disuss the ation of the Lie derivative on tensors in terms of other operations we

know, it is onvenient to hoose a oordinate system adapted to our problem. Spei�ally,

we will work in oordinates x

�

for whih x

1

is the parameter along the integral urves (and

the other oordinates are hosen any way we like). Then the vetor �eld takes the form

V = �=�x

1

; that is, it has omponents V

�

= (1; 0; 0; : : : ; 0). The magi of this oordinate

system is that a di�eomorphism by t amounts to a oordinate transformation from x

�

to

y

�

= (x

1

+ t; x

2

; : : : ; x

n

). Thus, from (5.6) the pullbak matrix is simply

(�

t�

)

�

�

= Æ

�

�

; (5.22)

and the omponents of the tensor pulled bak from �

t

(p) to p are simply

�

t�

[T

�

1

����

k

�

1

����

l

(�

t

(p))℄ = T

�

1

����

k

�

1

����

l

(x

1

+ t; x

2

; : : : ; x

n

) : (5.23)

In this oordinate system, then, the Lie derivative beomes

$

V

T

�

1

����

k

�

1

����

l

=

�

�x

1

T

�

1

����

k

�

1

����

l

; (5.24)

and spei�ally the derivative of a vetor �eld U

�

(x) is

$

V

U

�

=

�U

�

�x

1

: (5.25)

Although this expression is learly not ovariant, we know that the ommutator [V;U ℄ is a

well-de�ned tensor, and in this oordinate system

[V;U ℄

�

= V

�

�

�

U

�

� U

�

�

�

V

�
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=

�U

�

�x

1

: (5.26)

Therefore the Lie derivative of U with respet to V has the same omponents in this oordi-

nate system as the ommutator of V and U ; but sine both are vetors, they must be equal

in any oordinate system:

$

V

U

�

= [V ;U ℄

�

: (5.27)

As an immediate onsequene, we have $

V

S = �$

W

V . It is beause of (5.27) that the

ommutator is sometimes alled the \Lie braket."

To derive the ation of $

V

on a one-form !

�

, begin by onsidering the ation on the

salar !

�

U

�

for an arbitrary vetor �eld U

�

. First use the fat that the Lie derivative with

respet to a vetor �eld redues to the ation of the vetor itself when applied to a salar:

$

V

(!

�

U

�

) = V (!

�

U

�

)

= V

�

�

�

(!

�

U

�

)

= V

�

(�

�

!

�

)U

�

+ V

�

!

�

(�

�

U

�

) : (5.28)

Then use the Leibniz rule on the original salar:

$

V

(!

�

U

�

) = ($

V

!)

�

U

�

+ !

�

($

V

U )

�

= ($

V

!)

�

U

�

+ !

�

V

�

�

�

U

�

� !

�

U

�

�

�

V

�

: (5.29)

Setting these expressions equal to eah other and requiring that equality hold for arbitrary

U

�

, we see that

$

V

!

�

= V

�

�

�

!

�

+ (�

�

V

�

)!

�

; (5.30)

whih (like the de�nition of the ommutator) is ompletely ovariant, although not manifestly

so.

By a similar proedure we an de�ne the Lie derivative of an arbitrary tensor �eld. The

answer an be written

$

V

T

�

1

�

2

����

k

�

1

�

2

����

l

= V

�

�

�

T

�

1

�

2

����

k

�

1

�

2

����

l

�(�

�

V

�

1

)T

��

2

����

k

�

1

�

2

����

l

� (�

�

V

�

2

)T

�

1

�����

k

�

1

�

2

����

l

� � � �

+(�

�

1

V

�

)T

�

1

�

2

����

k

��

2

����

l

+ (�

�

2

V

�

)T

�

1

�

2

����

k

�

1

�����

l

+ � � � :(5.31)

One again, this expression is ovariant, despite appearanes. It would undoubtedly be

omforting, however, to have an equivalent expression that looked manifestly tensorial. In

fat it turns out that we an write

$

V

T

�

1

�

2

����

k

�

1

�

2

����

l

= V

�

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

�(r

�

V

�

1

)T

��

2

����

k

�

1

�

2

����

l

� (r

�

V

�

2

)T

�

1

�����

k

�

1

�

2

����

l

� � � �

+(r

�

1

V

�

)T

�

1

�

2

����

k

��

2

����

l

+ (r

�

2

V

�

)T

�

1

�

2

����

k

�

1

�����

l

+ � � � ;(5.32)
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where r

�

represents any symmetri (torsion-free) ovariant derivative (inluding, of ourse,

one derived from a metri). You an hek that all of the terms whih would involve onne-

tion oeÆients if we were to expand (5.32) would anel, leaving only (5.31). Both versions

of the formula for a Lie derivative are useful at di�erent times. A partiularly useful formula

is for the Lie derivative of the metri:

$

V

g

��

= V

�

r

�

g

��

+ (r

�

V

�

)g

��

+ (r

�

V

�

)g

��

= r

�

V

�

+r

�

V

�

= 2r

(�

V

�)

; (5.33)

where r

�

is the ovariant derivative derived from g

��

.

Let's put some of these ideas into the ontext of general relativity. You will often hear it

prolaimed that GR is a \di�eomorphism invariant" theory. What this means is that, if the

universe is represented by a manifold M with metri g

��

and matter �elds  , and � :M !

M is a di�eomorphism, then the sets (M;g

��

;  ) and (M;�

�

g

��

; �

�

 ) represent the same

physial situation. Sine di�eomorphisms are just ative oordinate transformations, this is

a highbrow way of saying that the theory is oordinate invariant. Although suh a statement

is true, it is a soure of great misunderstanding, for the simple fat that it onveys very little

information. Any semi-respetable theory of physis is oordinate invariant, inluding those

based on speial relativity or Newtonian mehanis; GR is not unique in this regard. When

people say that GR is di�eomorphism invariant, more likely than not they have one of two

(losely related) onepts in mind: the theory is free of \prior geometry", and there is no

preferred oordinate system for spaetime. The �rst of these stems from the fat that the

metri is a dynamial variable, and along with it the onnetion and volume element and

so forth. Nothing is given to us ahead of time, unlike in lassial mehanis or SR. As

a onsequene, there is no way to simplify life by stiking to a spei� oordinate system

adapted to some absolute elements of the geometry. This state of a�airs fores us to be very

areful; it is possible that two purportedly distint on�gurations (of matter and metri)

in GR are atually \the same", related by a di�eomorphism. In a path integral approah

to quantum gravity, where we would like to sum over all possible on�gurations, speial

are must be taken not to overount by allowing physially indistinguishable on�gurations

to ontribute more than one. In SR or Newtonian mehanis, meanwhile, the existene

of a preferred set of oordinates saves us from suh ambiguities. The fat that GR has no

preferred oordinate system is often garbled into the statement that it is oordinate invariant

(or \generally ovariant"); both things are true, but one has more ontent than the other.

On the other hand, the fat of di�eomorphism invariane an be put to good use. Reall

that the omplete ation for gravity oupled to a set of matter �elds  

i

is given by a sum of

the Hilbert ation for GR plus the matter ation,

S =

1

8�G

S

H

[g

��

℄ + S

M

[g

��

;  

i

℄ : (5.34)
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The Hilbert ation S

H

is di�eomorphism invariant when onsidered in isolation, so the matter

ation S

M

must also be if the ation as a whole is to be invariant. We an write the variation

in S

M

under a di�eomorphism as

ÆS

M

=

Z

d

n

x

ÆS

M

Æg

��

Æg

��

+

Z

d

n

x

ÆS

M

Æ 

i

Æ 

i

: (5.35)

We are not onsidering arbitrary variations of the �elds, only those whih result from a

di�eomorphism. Nevertheless, the matter equations of motion tell us that the variation of

S

M

with respet to  

i

will vanish for any variation (sine the gravitational part of the ation

doesn't involve the matter �elds). Hene, for a di�eomorphism invariant theory the �rst

term on the right hand side of (5.35) must vanish. If the di�eomorphism in generated by a

vetor �eld V

�

(x), the in�nitesimal hange in the metri is simply given by its Lie derivative

along V

�

; by (5.33) we have

Æg

��

= $

V

g

��

= 2r

(�

V

�)

: (5.36)

Setting ÆS

M

= 0 then implies

0 =

Z

d

n

x

ÆS

M

Æg

��

r

�

V

�

= �

Z

d

n

x

p

�gV

�

r

�

 

1

p

�g

ÆS

M

Æg

��

!

; (5.37)

where we are able to drop the symmetrization ofr

(�

V

�)

sine ÆS

M

=Æg

��

is already symmetri.

Demanding that (5.37) hold for di�eomorphisms generated by arbitrary vetor �elds V

�

, and

using the de�nition (4.70) of the energy-momentum tensor, we obtain preisely the law of

energy-momentum onservation,

r

�

T

��

= 0 : (5.38)

This is why we laimed earlier that the onservation of T

��

was more than simply a onse-

quene of the Priniple of Equivalene; it is muh more seure than that, resting only on the

di�eomorphism invariane of the theory.

There is one more use to whih we will put the mahinery we have set up in this setion:

symmetries of tensors. We say that a di�eomorphism � is a symmetry of some tensor T if

the tensor is invariant after being pulled bak under �:

�

�

T = T : (5.39)

Although symmetries may be disrete, it is more ommon to have a one-parameter family

of symmetries �

t

. If the family is generated by a vetor �eld V

�

(x), then (5.39) amounts to

$

V

T = 0 : (5.40)
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By (5.25), one impliation of a symmetry is that, if T is symmetri under some one-parameter

family of di�eomorphisms, we an always �nd a oordinate system in whih the omponents

of T are all independent of one of the oordinates (the integral urve oordinate of the

vetor �eld). The onverse is also true; if all of the omponents are independent of one

of the oordinates, then the partial derivative vetor �eld assoiated with that oordinate

generates a symmetry of the tensor.

The most important symmetries are those of the metri, for whih �

�

g

��

= g

��

. A

di�eomorphism of this type is alled an isometry. If a one-parameter family of isometries

is generated by a vetor �eld V

�

(x), then V

�

is known as a Killing vetor �eld. The

ondition that V

�

be a Killing vetor is thus

$

V

g

��

= 0 ; (5.41)

or from (5.33),

r

(�

V

�)

= 0 : (5.42)

This last version is Killing's equation. If a spaetime has a Killing vetor, then we know

we an �nd a oordinate system in whih the metri is independent of one of the oordinates.

By far the most useful fat about Killing vetors is that Killing vetors imply onserved

quantities assoiated with the motion of free partiles. If x

�

(�) is a geodesi with tangent

vetor U

�

= dx

�

=d�, and V

�

is a Killing vetor, then

U

�

r

�

(V

�

U

�

) = U

�

U

�

r

�

V

�

+ V

�

U

�

r

�

U

�

= 0 ; (5.43)

where the �rst term vanishes from Killing's equation and the seond from the fat that x

�

(�)

is a geodesi. Thus, the quantity V

�

U

�

is onserved along the partile's worldline. This an

be understood physially: by de�nition the metri is unhanging along the diretion of

the Killing vetor. Loosely speaking, therefore, a free partile will not feel any \fores" in

this diretion, and the omponent of its momentum in that diretion will onsequently be

onserved.

Long ago we referred to the onept of a spae with maximal symmetry, without o�ering

a rigorous de�nition. The rigorous de�nition is that a maximally symmetri spae is one

whih possesses the largest possible number of Killing vetors, whih on an n-dimensional

manifold is n(n+1)=2. We will not prove this statement, but it is easy to understand at an

informal level. Consider the Eulidean spae R

n

, where the isometries are well known to us:

translations and rotations. In general there will be n translations, one for eah diretion we

an move. There will also be n(n� 1)=2 rotations; for eah of n dimensions there are n� 1

diretions in whih we an rotate it, but we must divide by two to prevent overounting

(rotating x into y and rotating y into x are two versions of the same thing). We therefore
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have

n+

n(n� 1)

2

=

n(n+ 1)

2

(5.44)

independent Killing vetors. The same kind of ounting argument applies to maximally

symmetri spaes with urvature (suh as spheres) or a non-Eulidean signature (suh as

Minkowski spae), although the details are marginally di�erent.

Although it may or may not be simple to atually solve Killing's equation in any given

spaetime, it is frequently possible to write down some Killing vetors by inspetion. (Of

ourse a \generi" metri has no Killing vetors at all, but to keep things simple we often deal

with metris with high degrees of symmetry.) For example inR

2

with metri ds

2

= dx

2

+dy

2

,

independene of the metri omponents with respet to x and y immediately yields two

Killing vetors:

X

�

= (1; 0) ;

Y

�

= (0; 1) : (5.45)

These learly represent the two translations. The one rotation would orrespond to the

vetor R = �=�� if we were in polar oordinates; in Cartesian oordinates this beomes

R

�

= (�y; x) : (5.46)

You an hek for yourself that this atually does solve Killing's equation.

Note that in n � 2 dimensions, there an be more Killing vetors than dimensions. This

is beause a set of Killing vetor �elds an be linearly independent, even though at any one

point on the manifold the vetors at that point are linearly dependent. It is trivial to show

(so you should do it yourself) that a linear ombination of Killing vetors with onstant

oeÆients is still a Killing vetor (in whih ase the linear ombination does not ount as

an independent Killing vetor), but this is not neessarily true with oeÆients whih vary

over the manifold. You will also show that the ommutator of two Killing vetor �elds is a

Killing vetor �eld; this is very useful to know, but it may be the ase that the ommutator

gives you a vetor �eld whih is not linearly independent (or it may simply vanish). The

problem of �nding all of the Killing vetors of a metri is therefore somewhat triky, as it is

sometimes not lear when to stop looking.
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6 Weak Fields and Gravitational Radiation

When we �rst derived Einstein's equations, we heked that we were on the right trak by

onsidering the Newtonian limit. This amounted to the requirements that the gravitational

�eld be weak, that it be stati (no time derivatives), and that test partiles be moving slowly.

In this setion we will onsider a less restritive situation, in whih the �eld is still weak but

it an vary with time, and there are no restritions on the motion of test partiles. This

will allow us to disuss phenomena whih are absent or ambiguous in the Newtonian theory,

suh as gravitational radiation (where the �eld varies with time) and the deetion of light

(whih involves fast-moving partiles).

The weakness of the gravitational �eld is one again expressed as our ability to deompose

the metri into the at Minkowski metri plus a small perturbation,

g

��

= �

��

+ h

��

; jh

��

j << 1 : (6.1)

We will restrit ourselves to oordinates in whih �

��

takes its anonial form, �

��

=

diag(�1;+1;+1;+1). The assumption that h

��

is small allows us to ignore anything that is

higher than �rst order in this quantity, from whih we immediately obtain

g

��

= �

��

� h

��

; (6.2)

where h

��

= �

��

�

��

h

��

. As before, we an raise and lower indies using �

��

and �

��

, sine

the orretions would be of higher order in the perturbation. In fat, we an think of

the linearized version of general relativity (where e�ets of higher than �rst order in h

��

are negleted) as desribing a theory of a symmetri tensor �eld h

��

propagating on a at

bakground spaetime. This theory is Lorentz invariant in the sense of speial relativity;

under a Lorentz transformation x

�

0

= �

�

0

�

x

�

, the at metri �

��

is invariant, while the

perturbation transforms as

h

�

0

�

0
= �

�

0

�

�

�

0

�

h

��

: (6.3)

(Note that we ould have onsidered small perturbations about some other bakground

spaetime besides Minkowski spae. In that ase the metri would have been written g

��

=

g

(0)

��

+ h

��

, and we would have derived a theory of a symmetri tensor propagating on the

urved spae with metri g

(0)

��

. Suh an approah is neessary, for example, in osmology.)

We want to �nd the equation of motion obeyed by the perturbations h

��

, whih ome by

examining Einstein's equations to �rst order. We begin with the Christo�el symbols, whih

are given by

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

)
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=

1

2

�

��

(�

�

h

��

+ �

�

h

��

� �

�

h

��

) : (6.4)

Sine the onnetion oeÆients are �rst order quantities, the only ontribution to the Rie-

mann tensor will ome from the derivatives of the �'s, not the �

2

terms. Lowering an index

for onveniene, we obtain

R

����

= �

��

�

�

�

�

��

� �

��

�

�

�

�

��

=

1

2

(�

�

�

�

h

��

+ �

�

�

�

h

��

� �

�

�

�

h

��

� �

�

�

�

h

��

) : (6.5)

The Rii tensor omes from ontrating over � and �, giving

R

��

=

1

2

(�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h �2h

��

) ; (6.6)

whih is manifestly symmetri in � and �. In this expression we have de�ned the trae of

the perturbation as h = �

��

h

��

= h

�

�

, and the D'Alembertian is simply the one from at

spae, 2 = ��

2

t

+ �

2

x

+ �

2

y

+ �

2

z

. Contrating again to obtain the Rii salar yields

R = �

�

�

�

h

��

�2h : (6.7)

Putting it all together we obtain the Einstein tensor:

G

��

= R

��

�

1

2

�

��

R

=

1

2

(�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h�2h

��

� �

��

�

�

�

�

h

��

+ �

��

2h) : (6.8)

Consistent with our interpretation of the linearized theory as one desribing a symmetri

tensor on a at bakground, the linearized Einstein tensor (6.8) an be derived by varying

the following Lagrangian with respet to h

��

:

L =

1

2

�

(�

�

h

��

)(�

�

h)� (�

�

h

��

)(�

�

h

�

�

) +

1

2

�

��

(�

�

h

��

)(�

�

h

��

)�

1

2

�

��

(�

�

h)(�

�

h)

�

: (6.9)

I will spare you the details.

The linearized �eld equation is of ourse G

��

= 8�GT

��

, where G

��

is given by (6.8)

and T

��

is the energy-momentum tensor, alulated to zeroth order in h

��

. We do not

inlude higher-order orretions to the energy-momentum tensor beause the amount of

energy and momentummust itself be small for the weak-�eld limit to apply. In other words,

the lowest nonvanishing order in T

��

is automatially of the same order of magnitude as the

perturbation. Notie that the onservation law to lowest order is simply �

�

T

��

= 0. We will

most often be onerned with the vauum equations, whih as usual are just R

��

= 0, where

R

��

is given by (6.6).
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With the linearized �eld equations in hand, we are almost prepared to set about solving

them. First, however, we should deal with the thorny issue of gauge invariane. This issue

arises beause the demand that g

��

= �

��

+ h

��

does not ompletely speify the oordinate

system on spaetime; there may be other oordinate systems in whih the metri an still

be written as the Minkowski metri plus a small perturbation, but the perturbation will be

di�erent. Thus, the deomposition of the metri into a at bakground plus a perturbation

is not unique.

We an think about this from a highbrow point of view. The notion that the linearized

theory an be thought of as one governing the behavior of tensor �elds on a at bakground

an be formalized in terms of a \bakground spaetime" M

b

, a \physial spaetime" M

p

,

and a di�eomorphism � : M

b

! M

p

. As manifolds M

b

and M

p

are \the same" (sine

they are di�eomorphi), but we imagine that they possess some di�erent tensor �elds; on

M

b

we have de�ned the at Minkowski metri �

��

, while on M

p

we have some metri g

��

whih obeys Einstein's equations. (We imagine that M

b

is equipped with oordinates x

�

and

M

p

is equipped with oordinates y

�

, although these will not play a prominent role.) The

di�eomorphism � allows us to move tensors bak and forth between the bakground and

physial spaetimes. Sine we would like to onstrut our linearized theory as one taking

plae on the at bakground spaetime, we are interested in the pullbak (�

�

g)

��

of the

physial metri. We an de�ne the perturbation as the di�erene between the pulled-bak

physial metri and the at one:

h

��

= (�

�

g)

��

� �

��

: (6.10)

From this de�nition, there is no reason for the omponents of h

��

to be small; however, if the

gravitational �elds onM

p

are weak, then for some di�eomorphisms � we will have jh

��

j << 1.

We therefore limit our attention only to those di�eomorphisms for whih this is true. Then

the fat that g

��

obeys Einstein's equations on the physial spaetime means that h

��

will

obey the linearized equations on the bakground spaetime (sine �, as a di�eomorphism,

an be used to pull bak Einstein's equations themselves).

φ
*

φ
*

M M
φb p

(    g)
µν

gαβ
η

µν

In this language, the issue of gauge invariane is simply the fat that there are a large

number of permissible di�eomorphisms between M

b

and M

p

(where \permissible" means
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that the perturbation is small). Consider a vetor �eld �

�

(x) on the bakground spaetime.

This vetor �eld generates a one-parameter family of di�eomorphisms  

�

: M

b

! M

b

. For

� suÆiently small, if � is a di�eomorphism for whih the perturbation de�ned by (6.10) is

small than so will (� Æ  

�

) be, although the perturbation will have a di�erent value.

(      ψ  )φ ε

(      ψ  )φ ε

M Mb p

ψ

*

ε
ξ

µ

Spei�ally, we an de�ne a family of perturbations parameterized by �:

h

(�)

��

= [(� Æ  

�

)

�

g℄

��

� �

��

= [ 

��

(�

�

g)℄

��

� �

��

: (6.11)

The seond equality is based on the fat that the pullbak under a omposition is given by

the omposition of the pullbaks in the opposite order, whih follows from the fat that the

pullbak itself moves things in the opposite diretion from the original map. Plugging in the

relation (6.10), we �nd

h

(�)

��

=  

��

(h+ �)

��

� �

��

=  

��

(h

��

) +  

��

(�

��

)� �

��

(6.12)

(sine the pullbak of the sum of two tensors is the sum of the pullbaks). Now we use our

assumption that � is small; in this ase  

��

(h

��

) will be equal to h

��

to lowest order, while

the other two terms give us a Lie derivative:

h

(�)

��

=  

��

(h

��

) + �

"

 

��

(�

��

)� �

��

�

#

= h

��

+ �$

�

�

��

= h

��

+ 2��

(�

�

�)

: (6.13)

The last equality follows from our previous omputation of the Lie derivative of the metri,

(5.33), plus the fat that ovariant derivatives are simply partial derivatives to lowest order.

The in�nitesimal di�eomorphisms �

�

provide a di�erent representation of the same phys-

ial situation, while maintaining our requirement that the perturbation be small. Therefore,

the result (6.12) tells us what kind of metri perturbations denote physially equivalent

spaetimes | those related to eah other by 2��

(�

�

�)

, for some vetor �

�

. The invariane of
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our theory under suh transformations is analogous to traditional gauge invariane of ele-

tromagnetism under A

�

! A

�

+ �

�

�. (The analogy is di�erent from the previous analogy

we drew with eletromagnetism, relating loal Lorentz transformations in the orthonormal-

frame formalism to hanges of basis in an internal vetor bundle.) In eletromagnetism the

invariane omes about beause the �eld strength F

��

= �

�

A

�

� �

�

A

�

is left unhanged

by gauge transformations; similarly, we �nd that the transformation (6.13) hanges the lin-

earized Riemann tensor by

ÆR

����

=

1

2

(�

�

�

�

�

�

�

�

+ �

�

�

�

�

�

�

�

+ �

�

�

�

�

�

�

�

+ �

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

)

= 0 : (6.14)

Our abstrat derivation of the appropriate gauge transformation for the metri perturba-

tion is veri�ed by the fat that it leaves the urvature (and hene the physial spaetime)

unhanged.

Gauge invariane an also be understood from the slightly more lowbrow but onsiderably

more diret route of in�nitesimal oordinate transformations. Our di�eomorphism  

�

an

be thought of as hanging oordinates from x

�

to x

�

� ��

�

. (The minus sign, whih is

unonventional, omes from the fat that the \new" metri is pulled bak from a small

distane forward along the integral urves, whih is equivalent to replaing the oordinates

by those a small distane bakward along the urves.) Following through the usual rules for

transforming tensors under oordinate transformations, you an derive preisely (6.13) |

although you have to heat somewhat by equating omponents of tensors in two di�erent

oordinate systems. See Shutz or Weinberg for an example.

When faed with a system that is invariant under some kind of gauge transformations,

our �rst instint is to �x a gauge. We have already disussed the harmoni oordinate

system, and will return to it now in the ontext of the weak �eld limit. Reall that this

gauge was spei�ed by 2x

�

= 0, whih we showed was equivalent to

g

��

�

�

��

= 0 : (6.15)

In the weak �eld limit this beomes

1

2

�

��

�

��

(�

�

h

��

+ �

�

h

��

� �

�

h

��

) = 0 ; (6.16)

or

�

�

h

�

�

�

1

2

�

�

h = 0 : (6.17)

This ondition is also known as Lorentz gauge (or Einstein gauge or Hilbert gauge or de Don-

der gauge or Fok gauge). As before, we still have some gauge freedom remaining, sine we

an hange our oordinates by (in�nitesimal) harmoni funtions.
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In this gauge, the linearized Einstein equations G

��

= 8�GT

��

simplify somewhat, to

2h

��

�

1

2

�

��

2h = �16�GT

��

; (6.18)

while the vauum equations R

��

= 0 take on the elegant form

2h

��

= 0 ; (6.19)

whih is simply the onventional relativisti wave equation. Together, (6.19) and (6.17)

determine the evolution of a disturbane in the gravitational �eld in vauum in the harmoni

gauge.

It is often onvenient to work with a slightly di�erent desription of the metri pertur-

bation. We de�ne the \trae-reversed" perturbation

�

h

��

by

�

h

��

= h

��

�

1

2

�

��

h : (6.20)

The name makes sense, sine

�

h

�

�

= �h

�

�

. (The Einstein tensor is simply the trae-reversed

Rii tensor.) In terms of

�

h

��

the harmoni gauge ondition beomes

�

�

�

h

�

�

= 0 : (6.21)

The full �eld equations are

2

�

h

��

= �16�GT

��

; (6.22)

from whih it follows immediately that the vauum equations are

2

�

h

��

= 0 : (6.23)

From (6.22) and our previous exploration of the Newtonian limit, it is straightforward to

derive the weak-�eld metri for a stationary spherial soure suh as a planet or star. Reall

that previously we found that Einstein's equations predited that h

00

obeyed the Poisson

equation (4.51) in the weak-�eld limit, whih implied

h

00

= �2� ; (6.24)

where � is the onventional Newtonian potential, � = �GM=r. Let us now assume that

the energy-momentum tensor of our soure is dominated by its rest energy density � = T

00

.

(Suh an assumption is not generally neessary in the weak-�eld limit, but will ertainly

hold for a planet or star, whih is what we would like to onsider for the moment.) Then

the other omponents of T

��

will be muh smaller than T

00

, and from (6.22) the same must

hold for

�

h

��

. If

�

h

00

is muh larger than

�

h

ij

, we will have

h = �

�

h = ��

��

�

h

��

=

�

h

00

; (6.25)
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and then from (6.20) we immediately obtain

�

h

00

= 2h

00

= �4� : (6.26)

The other omponents of

�

h

��

are negligible, from whih we an derive

h

i0

=

�

h

i0

�

1

2

�

i0

�

h = 0 ; (6.27)

and

h

ij

=

�

h

ij

�

1

2

�

ij

�

h = �2�Æ

ij

: (6.28)

The metri for a star or planet in the weak-�eld limit is therefore

ds

2

= �(1 + 2�)dt

2

+ (1� 2�)(dx

2

+ dy

2

+ dz

2

) : (6.29)

A somewhat less simplisti appliation of the weak-�eld limit is to gravitational radiation.

Those of you familiar with the analogous problem in eletromagnetism will notie that the

proedure is almost preisely the same. We begin by onsidering the linearized equations in

vauum (6.23). Sine the at-spae D'Alembertian has the form 2 = ��

2

t

+ r

2

, the �eld

equation is in the form of a wave equation for

�

h

��

. As all good physiists know, the thing to

do when faed with suh an equation is to write down omplex-valued solutions, and then

take the real part at the very end of the day. So we reognize that a partiularly useful set

of solutions to this wave equation are the plane waves, given by

�

h

��

= C

��

e

ik

�

x

�

; (6.30)

where C

��

is a onstant, symmetri, (0; 2) tensor, and k

�

is a onstant vetor known as the

wave vetor. To hek that it is a solution, we plug in:

0 = 2

�

h

��

= �

��

�

�

�

�

�

h

��

= �

��

�

�

(ik

�

�

h

��

)

= ��

��

k

�

k

�

�

h

��

= �k

�

k

�

�

h

��

: (6.31)

Sine (for an interesting solution) not all of the omponents of h

��

will be zero everywhere,

we must have

k

�

k

�

= 0 : (6.32)

The plane wave (6.30) is therefore a solution to the linearized equations if the wavevetor

is null; this is loosely translated into the statement that gravitational waves propagate at

the speed of light. The timelike omponent of the wave vetor is often referred to as the
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frequeny of the wave, and we write k

�

= (!; k

1

; k

2

; k

3

). (More generally, an observer

moving with four-veloity U

�

would observe the wave to have a frequeny ! = �k

�

U

�

.)

Then the ondition that the wave vetor be null beomes

!

2

= Æ

ij

k

i

k

j

: (6.33)

Of ourse our wave is far from the most general solution; any (possibly in�nite) number of

distint plane waves an be added together and will still solve the linear equation (6.23).

Indeed, any solution an be written as suh a superposition.

There are a number of free parameters to speify the wave: ten numbers for the oeÆients

C

��

and three for the null vetor k

�

. Muh of these are the result of oordinate freedom and

gauge freedom, whih we now set about eliminating. We begin by imposing the harmoni

gauge ondition, (6.21). This implies that

0 = �

�

�

h

��

= �

�

(C

��

e

ik

�

x

�

)

= iC

��

k

�

e

ik

�

x

�

; (6.34)

whih is only true if

k

�

C

��

= 0 : (6.35)

We say that the wave vetor is orthogonal to C

��

. These are four equations, whih redue

the number of independent omponents of C

��

from ten to six.

Although we have now imposed the harmoni gauge ondition, there is still some oor-

dinate freedom left. Remember that any oordinate transformation of the form

x

�

! x

�

+ �

�

(6.36)

will leave the harmoni oordinate ondition

2x

�

= 0 (6.37)

satis�ed as long as we have

2�

�

= 0 : (6.38)

Of ourse, (6.38) is itself a wave equation for �

�

; one we hoose a solution, we will have

used up all of our gauge freedom. Let's hoose the following solution:

�

�

= B

�

e

ik

�

x

�

; (6.39)

where k

�

is the wave vetor for our gravitational wave and the B

�

are onstant oeÆients.

We now laim that this remaining freedom allows us to onvert from whatever oeÆients

C

(old)

��

that haraterize our gravitational wave to a new set C

(new)

��

, suh that

C

(new)�

�

= 0 (6.40)
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and

C

(new)

0�

= 0 : (6.41)

(Atually this last ondition is both a hoie of gauge and a hoie of Lorentz frame. The

hoie of gauge sets U

�

C

(new)

��

= 0 for some onstant timelike vetor U

�

, while the hoie of

frame makes U

�

point along the time axis.) Let's see how this is possible by solving expliitly

for the neessary oeÆients B

�

. Under the transformation (6.36), the resulting hange in

our metri perturbation an be written

h

(new)

��

= h

(old)

��

� �

�

�

�

� �

�

�

�

; (6.42)

whih indues a hange in the trae-reversed perturbation,

�

h

(new)

��

= h

(new)

��

�

1

2

�

��

h

(new)

= h

(old)

��

� �

�

�

�

� �

�

�

�

�

1

2

�

��

(h

(old)

� 2�

�

�

�

)

=

�

h

(old)

��

� �

�

�

�

� �

�

�

�

+ �

��

�

�

�

�

: (6.43)

Using the spei� forms (6.30) for the solution and (6.39) for the transformation, we obtain

C

(new)

��

= C

(old)

��

� ik

�

B

�

� ik

�

B

�

+ i�

��

k

�

B

�

: (6.44)

Imposing (6.40) therefore means

0 = C

(old)�

�

+ 2ik

�

B

�

; (6.45)

or

k

�

B

�

=

i

2

C

(old)�

�

: (6.46)

Then we an impose (6.41), �rst for � = 0:

0 = C

(old)

00

� 2ik

0

B

0

� ik

�

B

�

= C

(old)

00

� 2ik

0

B

0

+

1

2

C

(old)�

�

; (6.47)

or

B

0

= �

i

2k

0

�

C

(old)

00

+

1

2

C

(old)�

�

�

: (6.48)

Then impose (6.41) for � = j:

0 = C

(old)

0j

� ik

0

B

j

� ik

j

B

0

= C

(old)

0j

� ik

0

B

j

� ik

j

�

�i

2k

0

�

C

(old)

00

+

1

2

C

(old)�

�

��

; (6.49)
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or

B

j

=

i

2(k

0

)

2

�

�2k

0

C

(old)

0j

+ k

j

�

C

(old)

00

+

1

2

C

(old)�

�

��

: (6.50)

To hek that these hoies are mutually onsistent, we should plug (6.48) and (6.50) bak

into (6.40), whih I will leave to you. Let us assume that we have performed this transfor-

mation, and refer to the new omponents C

(new)

��

simply as C

��

.

Thus, we began with the ten independent numbers in the symmetri matrix C

��

. Choos-

ing harmoni gauge implied the four onditions (6.35), whih brought the number of indepen-

dent omponents down to six. Using our remaining gauge freedom led to the one ondition

(6.40) and the four onditions (6.41); but when � = 0 (6.41) implies (6.35), so we have a

total of four additional onstraints, whih brings us to two independent omponents. We've

used up all of our possible freedom, so these two numbers represent the physial information

haraterizing our plane wave in this gauge. This an be seen more expliitly by hoosing

our spatial oordinates suh that the wave is travelling in the x

3

diretion; that is,

k

�

= (!; 0; 0; k

3

) = (!; 0; 0; !) ; (6.51)

where we know that k

3

= ! beause the wave vetor is null. In this ase, k

�

C

��

= 0 and

C

0�

= 0 together imply

C

3�

= 0 : (6.52)

The only nonzero omponents of C

��

are therefore C

11

, C

12

, C

21

, and C

22

. But C

��

is

traeless and symmetri, so in general we an write

C

��

=

0

B

B

B

�

0 0 0 0

0 C

11

C

12

0

0 C

12

�C

11

0

0 0 0 0

1

C

C

C

A

: (6.53)

Thus, for a plane wave in this gauge travelling in the x

3

diretion, the two omponents C

11

and C

12

(along with the frequeny !) ompletely haraterize the wave.

In using up all of our gauge freedom, we have gone to a subgauge of the harmoni gauge

known as the transverse traeless gauge (or sometimes \radiation gauge"). The name

omes from the fat that the metri perturbation is traeless and perpendiular to the wave

vetor. Of ourse, we have been working with the trae-reversed perturbation

�

h

��

rather

than the perturbation h

��

itself; but sine

�

h

��

is traeless (beause C

��

is), and is equal to

the trae-reverse of h

��

, in this gauge we have

�

h

TT

��

= h

TT

��

(transverse traeless gauge) : (6.54)

Therefore we an drop the bars over h

��

, as long as we are in this gauge.
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One nie feature of the transverse traeless gauge is that if you are given the omponents

of a plane wave in some arbitrary gauge, you an easily onvert them into the transverse

traeless omponents. We �rst de�ne a tensor P

��

whih ats as a projetion operator:

P

��

= �

��

� n

�

n

�

: (6.55)

You an hek that this projets vetors onto hyperplanes orthogonal to the unit vetor n

�

.

Here we take n

�

to be a spaelike unit vetor, whih we hoose to lie along the diretion of

propagation of the wave:

n

0

= 0 ; n

j

= k

j

=! : (6.56)

Then the transverse part of some perturbation h

��

is simply the projetion P

�

�

P

�

�

h

��

, and

the transverse traeless part is obtained by subtrating o� the trae:

h

TT

��

= P

�

�

P

�

�

h

��

�

1

2

P

��

P

��

h

��

: (6.57)

For details appropriate to more general ases, see the disussion in Misner, Thorne and

Wheeler.

To get a feeling for the physial e�ets due to gravitational waves, it is useful to onsider

the motion of test partiles in the presene of a wave. It is ertainly insuÆient to solve

for the trajetory of a single partile, sine that would only tell us about the values of

the oordinates along the world line. (In fat, for any single partile we an �nd transverse

traeless oordinates in whih the partile appears stationary to �rst order in h

��

.) To obtain

a oordinate-independent measure of the wave's e�ets, we onsider the relative motion of

nearby partiles, as desribed by the geodesi deviation equation. If we onsider some nearby

partiles with four-veloities desribed by a single vetor �eld U

�

(x) and separation vetor

S

�

, we have

D

2

d�

2

S

�

= R

�

���

U

�

U

�

S

�

: (6.58)

We would like to ompute the left-hand side to �rst order in h

��

. If we take our test

partiles to be moving slowly then we an express the four-veloity as a unit vetor in the

time diretion plus orretions of order h

��

and higher; but we know that the Riemann tensor

is already �rst order, so the orretions to U

�

may be ignored, and we write

U

�

= (1; 0; 0; 0) : (6.59)

Therefore we only need to ompute R

�

00�

, or equivalently R

�00�

. From (6.5) we have

R

�00�

=

1

2

(�

0

�

0

h

��

+ �

�

�

�

h

00

� �

�

�

0

h

�0

� �

�

�

0

h

�0

) : (6.60)

But h

�0

= 0, so

R

�00�

=

1

2

�

0

�

0

h

��

: (6.61)



6 WEAK FIELDS AND GRAVITATIONAL RADIATION 153

Meanwhile, for our slowly-moving partiles we have � = x

0

= t to lowest order, so the

geodesi deviation equation beomes

�

2

�t

2

S

�

=

1

2

S

�

�

2

�t

2

h

�

�

: (6.62)

For our wave travelling in the x

3

diretion, this implies that only S

1

and S

2

will be a�eted

| the test partiles are only disturbed in diretions perpendiular to the wave vetor. This

is of ourse familiar from eletromagnetism, where the eletri and magneti �elds in a plane

wave are perpendiular to the wave vetor.

Our wave is haraterized by the two numbers, whih for future onveniene we will

rename as C

+

= C

11

and C

�

= C

12

. Let's onsider their e�ets separately, beginning with

the ase C

�

= 0. Then we have

�

2

�t

2

S

1

=

1

2

S

1

�

2

�t

2

(C

+

e

ik

�

x

�

) (6.63)

and

�

2

�t

2

S

2

= �

1

2

S

2

�

2

�t

2

(C

+

e

ik

�

x

�

) : (6.64)

These an be immediately solved to yield, to lowest order,

S

1

=

�

1 +

1

2

C

+

e

ik

�

x

�

�

S

1

(0) (6.65)

and

S

2

=

�

1 �

1

2

C

+

e

ik

�

x

�

�

S

2

(0) : (6.66)

Thus, partiles initially separated in the x

1

diretion will osillate bak and forth in the x

1

diretion, and likewise for those with an initial x

2

separation. That is, if we start with a ring

of stationary partiles in the x-y plane, as the wave passes they will boune bak and forth

in the shape of a \+":

x

y

On the other hand, the equivalent analysis for the ase where C

+

= 0 but C

�

6= 0 would

yield the solution

S

1

= S

1

(0) +

1

2

C

�

e

ik

�

x

�

S

2

(0) (6.67)
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and

S

2

= S

2

(0) +

1

2

C

�

e

ik

�

x

�

S

1

(0) : (6.68)

In this ase the irle of partiles would boune bak and forth in the shape of a \�":

x

y

The notation C

+

and C

�

should therefore be lear. These two quantities measure the two

independent modes of linear polarization of the gravitational wave. If we liked we ould

onsider right- and left-handed irularly polarized modes by de�ning

C

R

=

1

p

2

(C

+

+ iC

�

) ;

C

L

=

1

p

2

(C

+

� iC

�

) : (6.69)

The e�et of a pure C

R

wave would be to rotate the partiles in a right-handed sense,

x

y

and similarly for the left-handed mode C

L

. (Note that the individual partiles do not travel

around the ring; they just move in little epiyles.)

We an relate the polarization states of lassial gravitational waves to the kinds of

partiles we would expet to �nd upon quantization. The eletromagneti �eld has two in-

dependent polarization states whih are desribed by vetors in the x-y plane; equivalently,

a single polarization mode is invariant under a rotation by 360

Æ

in this plane. Upon quan-

tization this theory yields the photon, a massless spin-one partile. The neutrino, on the

other hand, is also a massless partile, desribed by a �eld whih piks up a minus sign

under rotations by 360

Æ

; it is invariant under rotations of 720

Æ

, and we say it has spin-

1

2

.
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The general rule is that the spin S is related to the angle � under whih the polarization

modes are invariant by S = 360

Æ

=�. The gravitational �eld, whose waves propagate at the

speed of light, should lead to massless partiles in the quantum theory. Notiing that the

polarization modes we have desribed are invariant under rotations of 180

Æ

in the x-y plane,

we expet the assoiated partiles | \gravitons" | to be spin-2. We are a long way from

deteting suh partiles (and it would not be a surprise if we never deteted them diretly),

but any respetable quantum theory of gravity should predit their existene.

With plane-wave solutions to the linearized vauum equations in our possession, it re-

mains to disuss the generation of gravitational radiation by soures. For this purpose it is

neessary to onsider the equations oupled to matter,

2

�

h

��

= �16�GT

��

: (6.70)

The solution to suh an equation an be obtained using a Green's funtion, in preisely the

same way as the analogous problem in eletromagnetism. Here we will review the outline of

the method.

The Green's funtion G(x

�

� y

�

) for the D'Alembertian operator 2 is the solution of the

wave equation in the presene of a delta-funtion soure:

2

x

G(x

�

� y

�

) = Æ

(4)

(x

�

� y

�

) ; (6.71)

where 2

x

denotes the D'Alembertian with respet to the oordinates x

�

. The usefulness of

suh a funtion resides in the fat that the general solution to an equation suh as (6.70)

an be written

�

h

��

(x

�

) = �16�G

Z

G(x

�

� y

�

)T

��

(y

�

) d

4

y ; (6.72)

as an be veri�ed immediately. (Notie that no fators of

p

�g are neessary, sine our

bakground is simply at spaetime.) The solutions to (6.71) have of ourse been worked

out long ago, and they an be thought of as either \retarded" or \advaned," depending on

whether they represent waves travelling forward or bakward in time. Our interest is in the

retarded Green's funtion, whih represents the aumulated e�ets of signals to the past of

the point under onsideration. It is given by

G(x

�

� y

�

) = �

1

4�jx� yj

Æ[jx� yj � (x

0

� y

0

)℄ �(x

0

� y

0

) : (6.73)

Here we have used boldfae to denote the spatial vetors x = (x

1

; x

2

; x

3

) and y = (y

1

; y

2

; y

3

),

with norm jx� yj = [Æ

ij

(x

i

� y

i

)(x

j

� y

j

)℄

1=2

. The theta funtion �(x

0

� y

0

) equals 1 when

x

0

> y

0

, and zero otherwise. The derivation of (6.73) would take us too far a�eld, but it an

be found in any standard text on eletrodynamis or partial di�erential equations in physis.
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Upon plugging (6.73) into (6.72), we an use the delta funtion to perform the integral

over y

0

, leaving us with

�

h

��

(t;x) = 4G

Z

1

jx� yj

T

��

(t� jx� yj;y) d

3

y ; (6.74)

where t = x

0

. The term \retarded time" is used to refer to the quantity

t

r

= t� jx� yj : (6.75)

The interpretation of (6.74) should be lear: the disturbane in the gravitational �eld at (t;x)

is a sum of the inuenes from the energy and momentum soures at the point (t

r

;x � y)

on the past light one.

t xi

y i

(t  , y  )i
r

Let us take this general solution and onsider the ase where the gravitational radiation

is emitted by an isolated soure, fairly far away, omprised of nonrelativisti matter; these

approximations will be made more preise as we go on. First we need to set up some on-

ventions for Fourier transforms, whih always make life easier when dealing with osillatory

phenomena. Given a funtion of spaetime �(t;x), we are interested in its Fourier transform

(and inverse) with respet to time alone,

e

�(!;x) =

1

p

2�

Z

dt e

i!t

�(t;x) ;

�(t;x) =

1

p

2�

Z

d! e

�i!t

e

�(!;x) : (6.76)

Taking the transform of the metri perturbation, we obtain

e

�

h

��

(!;x) =

1

p

2�

Z

dt e

i!t

�

h

��

(t;x)
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=

4G

p

2�

Z

dt d

3

y e

i!t

T

��

(t� jx� yj;y)

jx� yj

=

4G

p

2�

Z

dt

r

d

3

y e

i!t

r

e

i!jx�yj

T

��

(t

r

;y)

jx� yj

= 4G

Z

d

3

y e

i!jx�yj

e

T

��

(!;y)

jx� yj

: (6.77)

In this sequene, the �rst equation is simply the de�nition of the Fourier transform, the

seond line omes from the solution (6.74), the third line is a hange of variables from t to

t

r

, and the fourth line is one again the de�nition of the Fourier transform.

We now make the approximations that our soure is isolated, far away, and slowly moving.

This means that we an onsider the soure to be entered at a (spatial) distane R, with

the di�erent parts of the soure at distanes R + ÆR suh that ÆR << R. Sine it is

slowly moving, most of the radiation emitted will be at frequenies ! suÆiently low that

ÆR << !

�1

. (Essentially, light traverses the soure muh faster than the omponents of the

soure itself do.)

observer

R

Rδ
source

Under these approximations, the term e

i!jx�yj

=jx�yj an be replaed by e

i!R

=R and brought

outside the integral. This leaves us with

e

�

h

��

(!;x) = 4G

e

i!R

R

Z

d

3

y

e

T

��

(!;y) : (6.78)

In fat there is no need to ompute all of the omponents of

e

�

h

��

(!;x), sine the harmoni

gauge ondition �

�

�

h

��

(t;x) = 0 in Fourier spae implies

e

�

h

0�

=

i

!

�

i

e

�

h

i�

: (6.79)

We therefore only need to onern ourselves with the spaelike omponents of

e

�

h

��

(!;x).

From (6.78) we therefore want to take the integral of the spaelike omponents of

e

T

��

(!;y).
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We begin by integrating by parts in reverse:

Z

d

3

y

e

T

ij

(!;y) =

Z

�

k

(y

i

e

T

kj

) d

3

y �

Z

y

i

(�

k

e

T

kj

) d

3

y : (6.80)

The �rst term is a surfae integral whih will vanish sine the soure is isolated, while the

seond an be related to

e

T

0j

by the Fourier-spae version of �

�

T

��

= 0:

� �

k

e

T

k�

= i!

e

T

0�

: (6.81)

Thus,

Z

d

3

y

e

T

ij

(!;y) = i!

Z

y

i

e

T

0j

d

3

y

=

i!

2

Z

(y

i

e

T

0j

+ y

j

e

T

0i

) d

3

y

=

i!

2

Z

h

�

l

(y

i

y

j

e

T

0l

)� y

i

y

j

(�

l

e

T

0l

)

i

d

3

y

= �

!

2

2

Z

y

i

y

j

e

T

00

d

3

y : (6.82)

The seond line is justi�ed sine we know that the left hand side is symmetri in i and j,

while the third and fourth lines are simply repetitions of reverse integration by parts and

onservation of T

��

. It is onventional to de�ne the quadrupole moment tensor of the

energy density of the soure,

q

ij

(t) = 3

Z

y

i

y

j

T

00

(t;y) d

3

y ; (6.83)

a onstant tensor on eah surfae of onstant time. In terms of the Fourier transform of the

quadrupole moment, our solution takes on the ompat form

e

�

h

ij

(!;x) = �

2G!

2

3

e

i!R

R

e

q

ij

(!) ; (6.84)

or, transforming bak to t,

�

h

ij

(t;x) = �

1

p

2�

2G

3R

Z

d! e

�i!(t�R)

!

2

e

q

ij

(!)

=

1

p

2�

2G

3R

d

2

dt

2

Z

d! e

�i!t

r

e

q

ij

(!)

=

2G

3R

d

2

q

ij

dt

2

(t

r

) ; (6.85)

where as before t

r

= t�R.

The gravitational wave produed by an isolated nonrelativisti objet is therefore pro-

portional to the seond derivative of the quadrupole moment of the energy density at the
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point where the past light one of the observer intersets the soure. In ontrast, the leading

ontribution to eletromagneti radiation omes from the hanging dipole moment of the

harge density. The di�erene an be traed bak to the universal nature of gravitation. A

hanging dipole moment orresponds to motion of the enter of density | harge density in

the ase of eletromagnetism, energy density in the ase of gravitation. While there is noth-

ing to stop the enter of harge of an objet from osillating, osillation of the enter of mass

of an isolated system violates onservation of momentum. (You an shake a body up and

down, but you and the earth shake ever so slightly in the opposite diretion to ompensate.)

The quadrupole moment, whih measures the shape of the system, is generally smaller than

the dipole moment, and for this reason (as well as the weak oupling of matter to gravity)

gravitational radiation is typially muh weaker than eletromagneti radiation.

It is always eduational to take a general solution and apply it to a spei� ase of

interest. One ase of genuine interest is the gravitational radiation emitted by a binary star

(two stars in orbit around eah other). For simpliity let us onsider two stars of massM in

a irular orbit in the x

1

-x

2

plane, at distane r from their ommon enter of mass.

x

x

x

M

M

v

v

r r

1

2

3

We will treat the motion of the stars in the Newtonian approximation, where we an disuss

their orbit just as Kepler would have. Cirular orbits are most easily haraterized by

equating the fore due to gravity to the outward \entrifugal" fore:

GM

2

(2r)

2

=

Mv

2

r

; (6.86)

whih gives us

v =

�

GM

4r

�

1=2

: (6.87)

The time it takes to omplete a single orbit is simply

T =

2�r

v

; (6.88)
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but more useful to us is the angular frequeny of the orbit,


 =

2�

T

=

�

GM

4r

3

�

1=2

: (6.89)

In terms of 
 we an write down the expliit path of star a,

x

1

a

= r os 
t ; x

2

a

= r sin
t ; (6.90)

and star b,

x

1

b

= �r os
t ; x

2

b

= �r sin
t : (6.91)

The orresponding energy density is

T

00

(t;x) =MÆ(x

3

)

h

Æ(x

1

� r os 
t)Æ(x

2

� r sin
t) + Æ(x

1

+ r os
t)Æ(x

2

+ r sin
t)

i

:

(6.92)

The profusion of delta funtions allows us to integrate this straightforwardly to obtain the

quadrupole moment from (6.83):

q

11

= 6Mr

2

os

2


t = 3Mr

2

(1 + os 2
t)

q

22

= 6Mr

2

sin

2


t = 3Mr

2

(1 � os 2
t)

q

12

= q

21

= 6Mr

2

(os 
t)(sin
t) = 3Mr

2

sin 2
t

q

i3

= 0 : (6.93)

From this in turn it is easy to get the omponents of the metri perturbation from (6.85):

�

h

ij

(t;x) =

8GM

R




2

r

2

0

B

�

� os 2
t

r

� sin 2
t

r

0

� sin 2
t

r

os 2
t

r

0

0 0 0

1

C

A

: (6.94)

The remaining omponents of

�

h

��

ould be derived from demanding that the harmoni gauge

ondition be satis�ed. (We have not imposed a subsidiary gauge ondition, so we are still

free to do so.)

It is natural at this point to talk about the energy emitted via gravitational radiation.

Suh a disussion, however, is immediately beset by problems, both tehnial and philo-

sophial. As we have mentioned before, there is no true loal measure of the energy in

the gravitational �eld. Of ourse, in the weak �eld limit, where we think of gravitation as

being desribed by a symmetri tensor propagating on a �xed bakground metri, we might

hope to derive an energy-momentum tensor for the utuations h

��

, just as we would for

eletromagnetism or any other �eld theory. To some extent this is possible, but there are

still diÆulties. As a result of these diÆulties there are a number of di�erent proposals in

the literature for what we should use as the energy-momentum tensor for gravitation in the
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weak �eld limit; all of them are di�erent, but for the most part they give the same answers

for physially well-posed questions suh as the rate of energy emitted by a binary system.

At a tehnial level, the diÆulties begin to arise when we onsider what form the energy-

momentumtensor should take. We have previously mentioned the energy-momentumtensors

for eletromagnetism and salar �eld theory, and they both shared an important feature |

they were quadrati in the relevant �elds. By hypothesis our approah to the weak �eld limit

has been to only keep terms whih are linear in the metri perturbation. Hene, in order

to keep trak of the energy arried by the gravitational waves, we will have to extend our

alulations to at least seond order in h

��

. In fat we have been heating slightly all along.

In disussing the e�ets of gravitational waves on test partiles, and the generation of waves

by a binary system, we have been using the fat that test partiles move along geodesis. But

as we know, this is derived from the ovariant onservation of energy-momentum,r

�

T

��

= 0.

In the order to whih we have been working, however, we atually have �

�

T

��

= 0, whih

would imply that test partiles move on straight lines in the at bakground metri. This

is a symptom of the fundamental inonsisteny of the weak �eld limit. In pratie, the best

that an be done is to solve the weak �eld equations to some appropriate order, and then

justify after the fat the validity of the solution.

Keeping these issues in mind, let us onsider Einstein's equations (in vauum) to seond

order, and see how the result an be interpreted in terms of an energy-momentum tensor for

the gravitational �eld. If we write the metri as g

��

= �

��

+ h

��

, then at �rst order we have

G

(1)

��

[� + h℄ = 0 ; (6.95)

where G

(1)

��

is Einstein's tensor expanded to �rst order in h

��

. These equations determine

h

��

up to (unavoidable) gauge transformations, so in order to satisfy the equations at seond

order we have to add a higher-order perturbation, and write

g

��

= �

��

+ h

��

+ h

(2)

��

: (6.96)

The seond-order version of Einstein's equations onsists of all terms either quadrati in h

��

or linear in h

(2)

��

. Sine any ross terms would be of at least third order, we have

G

(1)

��

[� + h

(2)

℄ +G

(2)

��

[� + h℄ = 0 : (6.97)

Here, G

(2)

��

is the part of the Einstein tensor whih is of seond order in the metri perturba-

tion. It an be omputed from the seond-order Rii tensor, whih is given by

R

(2)

��

=

1

2

h

��

�

�

�

�

h

��

� h

��

�

�

�

(�

h

�)�

+

1

4

(�

�

h

��

)�

�

h

��

+ (�

�

h

�

�

)�

[�

h

�℄�

+

1

2

�

�

(h

��

�

�

h

��

)�

1

4

(�

�

h

��

)�

�

h� (�

�

h

��

�

1

2

�

�

h)�

(�

h

�)�

: (6.98)
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We an ast (6.97) into the suggestive form

G

(1)

��

[� + h

(2)

℄ = 8�Gt

��

; (6.99)

simply by de�ning

t

��

= �

1

8�G

G

(2)

��

[� + h℄ : (6.100)

The notation is of ourse meant to suggest that we think of t

��

as an energy-momentum

tensor, spei�ally that of the gravitational �eld (at least in the weak �eld regime). To make

this laim seem plausible, note that the Bianhi identity for G

(1)

��

[�+ h

(2)

℄ implies that t

��

is

onserved in the at-spae sense,

�

�

t

��

= 0 : (6.101)

Unfortunately there are some limitations on our interpretation of t

��

as an energy-

momentum tensor. Of ourse it is not a tensor at all in the full theory, but we are leaving

that aside by hypothesis. More importantly, it is not invariant under gauge transformations

(in�nitesimal di�eomorphisms), as you ould hek by diret alulation. However, we an

onstrut global quantities whih are invariant under ertain speial kinds of gauge transfor-

mations (basially, those that vanish suÆiently rapidly at in�nity; see Wald). These inlude

the total energy on a surfae � of onstant time,

E =

Z

�

t

00

d

3

x ; (6.102)

and the total energy radiated through to in�nity,

�E =

Z

S

t

0�

n

�

d

2

x dt : (6.103)

Here, the integral is taken over a timelike surfae S made of a spaelike two-sphere at in�nity

and some interval in time, and n

�

is a unit spaelike vetor normal to S.

Evaluating these formulas in terms of the quadrupole moment of a radiating soure

involves a lengthy alulation whih we will not reprodue here. Without further ado, the

amount of radiated energy an be written

�E =

Z

P dt ; (6.104)

where the power P is given by

P =

G

45

"

d

3

Q

ij

dt

3

d

3

Q

ij

dt

3

#

t

r

; (6.105)

and here Q

ij

is the traeless part of the quadrupole moment,

Q

ij

= q

ij

�

1

3

Æ

ij

Æ

kl

q

kl

: (6.106)
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For the binary system represented by (6.93), the traeless part of the quadrupole is

Q

ij

=Mr

2

0

B

�

(1 + 3 os 2
t) 3 sin 2
t 0

3 sin 2
t (1� 3 os 2
t) 0

0 0 �2

1

C

A

; (6.107)

and its third time derivative is therefore

d

3

Q

ij

dt

3

= 24Mr

2




3

0

B

�

sin 2
t � os 2
t 0

� os 2
t � sin 2
t 0

0 0 0

1

C

A

: (6.108)

The power radiated by the binary is thus

P =

2

7

5

GM

2

r

4




6

; (6.109)

or, using expression (6.89) for the frequeny,

P =

2

5

G

4

M

5

r

5

: (6.110)

Of ourse, this has atually been observed. In 1974 Hulse and Taylor disovered a binary

system, PSR1913+16, in whih both stars are very small (so lassial e�ets are negligible, or

at least under ontrol) and one is a pulsar. The period of the orbit is eight hours, extremely

small by astrophysial standards. The fat that one of the stars is a pulsar provides a very

aurate lok, with respet to whih the hange in the period as the system loses energy

an be measured. The result is onsistent with the predition of general relativity for energy

loss through gravitational radiation. Hulse and Taylor were awarded the Nobel Prize in 1993

for their e�orts.
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7 The Shwarzshild Solution and Blak Holes

We now move from the domain of the weak-�eld limit to solutions of the full nonlinear

Einstein's equations. With the possible exeption of Minkowski spae, by far the most

important suh solution is that disovered by Shwarzshild, whih desribes spherially

symmetri vauum spaetimes. Sine we are in vauum, Einstein's equations beome R

��

=

0. Of ourse, if we have a proposed solution to a set of di�erential equations suh as this,

it would suÆe to plug in the proposed solution in order to verify it; we would like to do

better, however. In fat, we will sketh a proof of Birkho�'s theorem, whih states that the

Shwarzshild solution is the unique spherially symmetri solution to Einstein's equations

in vauum. The proedure will be to �rst present some non-rigorous arguments that any

spherially symmetri metri (whether or not it solves Einstein's equations) must take on a

ertain form, and then work from there to more arefully derive the atual solution in suh

a ase.

\Spherially symmetri" means \having the same symmetries as a sphere." (In this

setion the word \sphere" means S

2

, not spheres of higher dimension.) Sine the objet of

interest to us is the metri on a di�erentiable manifold, we are onerned with those metris

that have suh symmetries. We know how to haraterize symmetries of the metri | they

are given by the existene of Killing vetors. Furthermore, we know what the Killing vetors

of S

2

are, and that there are three of them. Therefore, a spherially symmetri manifold

is one that has three Killing vetor �elds whih are just like those on S

2

. By \just like"

we mean that the ommutator of the Killing vetors is the same in either ase | in fanier

language, that the algebra generated by the vetors is the same. Something that we didn't

show, but is true, is that we an hoose our three Killing vetors on S

2

to be (V

(1)

; V

(2)

; V

(3)

),

suh that

[V

(1)

; V

(2)

℄ = V

(3)

[V

(2)

; V

(3)

℄ = V

(1)

[V

(3)

; V

(1)

℄ = V

(2)

: (7.1)

The ommutation relations are exatly those of SO(3), the group of rotations in three di-

mensions. This is no oinidene, of ourse, but we won't pursue this here. All we need is

that a spherially symmetri manifold is one whih possesses three Killing vetor �elds with

the above ommutation relations.

Bak in setion three we mentioned Frobenius's Theorem, whih states that if you have

a set of ommuting vetor �elds then there exists a set of oordinate funtions suh that the

vetor �elds are the partial derivatives with respet to these funtions. In fat the theorem

164
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does not stop there, but goes on to say that if we have some vetor �elds whih do not

ommute, but whose ommutator loses | the ommutator of any two �elds in the set is a

linear ombination of other �elds in the set | then the integral urves of these vetor �elds

\�t together" to desribe submanifolds of the manifold on whih they are all de�ned. The

dimensionality of the submanifold may be smaller than the number of vetors, or it ould be

equal, but obviously not larger. Vetor �elds whih obey (7.1) will of ourse form 2-spheres.

Sine the vetor �elds streth throughout the spae, every point will be on exatly one of

these spheres. (Atually, it's almost every point | we will show below how it an fail to be

absolutely every point.) Thus, we say that a spherially symmetri manifold an be foliated

into spheres.

Let's onsider some examples to bring this down to earth. The simplest example is

at three-dimensional Eulidean spae. If we pik an origin, then R

3

is learly spherially

symmetri with respet to rotations around this origin. Under suh rotations (i.e., under

the ow of the Killing vetor �elds) points move into eah other, but eah point stays on an

S

2

at a �xed distane from the origin.

x

y

z

R
3

It is these spheres whih foliate R

3

. Of ourse, they don't really foliate all of the spae, sine

the origin itself just stays put under rotations | it doesn't move around on some two-sphere.

But it should be lear that almost all of the spae is properly foliated, and this will turn out

to be enough for us.

We an also have spherial symmetry without an \origin" to rotate things around. An

example is provided by a \wormhole", with topology R � S

2

. If we suppress a dimension

and draw our two-spheres as irles, suh a spae might look like this:
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In this ase the entire manifold an be foliated by two-spheres.

This foliated struture suggests that we put oordinates on our manifold in a way whih

is adapted to the foliation. By this we mean that, if we have an n-dimensional manifold

foliated by m-dimensional submanifolds, we an use a set of m oordinate funtions u

i

on

the submanifolds and a set of n�m oordinate funtions v

I

to tell us whih submanifold we

are on. (So i runs from 1 to m, while I runs from 1 to n �m.) Then the olletion of v's

and u's oordinatize the entire spae. If the submanifolds are maximally symmetri spaes

(as two-spheres are), then there is the following powerful theorem: it is always possible to

hoose the u-oordinates suh that the metri on the entire manifold is of the form

ds

2

= g

��

dx

�

dx

�

= g

IJ

(v)dv

I

dv

J

+ f(v)

ij

(u)du

i

du

j

: (7.2)

Here 

ij

(u) is the metri on the submanifold. This theorem is saying two things at one:

that there are no ross terms dv

I

du

j

, and that both g

IJ

(v) and f(v) are funtions of the

v

I

alone, independent of the u

i

. Proving the theorem is a mess, but you are enouraged

to look in hapter 13 of Weinberg. Nevertheless, it is a perfetly sensible result. Roughly

speaking, if g

IJ

or f depended on the u

i

then the metri would hange as we moved in a

single submanifold, whih violates the assumption of symmetry. The unwanted ross terms,

meanwhile, an be eliminated by making sure that the tangent vetors �=�v

I

are orthogonal

to the submanifolds | in other words, that we line up our submanifolds in the same way

throughout the spae.

We are now through with handwaving, and an ommene some honest alulation. For

the ase at hand, our submanifolds are two-spheres, on whih we typially hoose oordinates

(�; �) in whih the metri takes the form

d


2

= d�

2

+ sin

2

� d�

2

: (7.3)

Sine we are interested in a four-dimensional spaetime, we need two more oordinates, whih

we an all a and b. The theorem (7.2) is then telling us that the metri on a spherially
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symmetri spaetime an be put in the form

ds

2

= g

aa

(a; b)da

2

+ g

ab

(a; b)(dadb+ dbda) + g

bb

(a; b)db

2

+ r

2

(a; b)d


2

: (7.4)

Here r(a; b) is some as-yet-undetermined funtion, to whih we have merely given a suggestive

label. There is nothing to stop us, however, from hanging oordinates from (a; b) to (a; r),

by inverting r(a; b). (The one thing that ould possibly stop us would be if r were a funtion

of a alone; in this ase we ould just as easily swith to (b; r), so we will not onsider this

situation separately.) The metri is then

ds

2

= g

aa

(a; r)da

2

+ g

ar

(a; r)(dadr + drda) + g

rr

(a; r)dr

2

+ r

2

d


2

: (7.5)

Our next step is to �nd a funtion t(a; r) suh that, in the (t; r) oordinate system, there

are no ross terms dtdr + drdt in the metri. Notie that

dt =

�t

�a

da+

�t

�r

dr ; (7.6)

so

dt

2

=

 

�t

�a

!

2

da

2

+

 

�t

�a

! 

�t

�r

!

(dadr + drda) +

 

�t

�r

!

2

dr

2

: (7.7)

We would like to replae the �rst three terms in the metri (7.5) by

mdt

2

+ ndr

2

; (7.8)

for some funtions m and n. This is equivalent to the requirements

m

 

�t

�a

!

2

= g

aa

; (7.9)

n+m

 

�t

�r

!

2

= g

rr

; (7.10)

and

m

 

�t

�a

! 

�t

�r

!

= g

ar

: (7.11)

We therefore have three equations for the three unknowns t(a; r), m(a; r), and n(a; r), just

enough to determine them preisely (up to initial onditions for t). (Of ourse, they are

\determined" in terms of the unknown funtions g

aa

, g

ar

, and g

rr

, so in this sense they are

still undetermined.) We an therefore put our metri in the form

ds

2

= m(t; r)dt

2

+ n(t; r)dr

2

+ r

2

d


2

: (7.12)
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To this point the only di�erene between the two oordinates t and r is that we have

hosen r to be the one whih multiplies the metri for the two-sphere. This hoie was

motivated by what we know about the metri for at Minkowski spae, whih an be written

ds

2

= �dt

2

+ dr

2

+ r

2

d


2

. We know that the spaetime under onsideration is Lorentzian,

so either m or n will have to be negative. Let us hoose m, the oeÆient of dt

2

, to be

negative. This is not a hoie we are simply allowed to make, and in fat we will see later

that it an go wrong, but we will assume it for now. The assumption is not ompletely

unreasonable, sine we know that Minkowski spae is itself spherially symmetri, and will

therefore be desribed by (7.12). With this hoie we an trade in the funtions m and n for

new funtions � and �, suh that

ds

2

= �e

2�(t;r)

dt

2

+ e

2�(t;r)

dr

2

+ r

2

d


2

: (7.13)

This is the best we an do for a general metri in a spherially symmetri spaetime. The

next step is to atually solve Einstein's equations, whih will allow us to determine expliitly

the funtions �(t; r) and �(t; r). It is unfortunately neessary to ompute the Christo�el

symbols for (7.13), from whih we an get the urvature tensor and thus the Rii tensor. If

we use labels (0; 1; 2; 3) for (t; r; �; �) in the usual way, the Christo�el symbols are given by

�

0

00

= �

0

� �

0

01

= �

1

� �

0

11

= e

2(���)

�

0

�

�

1

00

= e

2(���)

�

1

� �

1

01

= �

0

� �

1

11

= �

1

�

�

2

12

=

1

r

�

1

22

= �re

�2�

�

3

13

=

1

r

�

1

33

= �re

�2�

sin

2

� �

2

33

= � sin � os � �

3

23

=

os �

sin �

: (7.14)

(Anything not written down expliitly is meant to be zero, or related to what is written

by symmetries.) From these we get the following nonvanishing omponents of the Riemann

tensor:

R

0

101

= e

2(���)

[�

2

0

� + (�

0

�)

2

� �

0

��

0

�℄ + [�

1

��

1

� � �

2

1

�� (�

1

�)

2

℄

R

0

202

= �re

�2�

�

1

�

R

0

303

= �re

�2�

sin

2

� �

1

�

R

0

212

= �re

�2�

�

0

�

R

0

313

= �re

�2�

sin

2

� �

0

�

R

1

212

= re

�2�

�

1

�

R

1

313

= re

�2�

sin

2

� �

1

�

R

2

323

= (1� e

�2�

) sin

2

� : (7.15)

Taking the ontration as usual yields the Rii tensor:

R

00

= [�

2

0

� + (�

0

�)

2

� �

0

��

0

�℄ + e

2(���)

[�

2

1

� + (�

1

�)

2

� �

1

��

1

� +

2

r

�

1

�℄
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R

11

= �[�

2

1

�+ (�

1

�)

2

� �

1

��

1

� �

2

r

�

1

�℄ + e

2(���)

[�

2

0

� + (�

0

�)

2

� �

0

��

0

�℄

R

01

=

2

r

�

0

�

R

22

= e

�2�

[r(�

1

� � �

1

�)� 1℄ + 1

R

33

= R

22

sin

2

� : (7.16)

Our job is to set R

��

= 0. From R

01

= 0 we get

�

0

� = 0 : (7.17)

If we onsider taking the time derivative of R

22

= 0 and using �

0

� = 0, we get

�

0

�

1

� = 0 : (7.18)

We an therefore write

� = �(r)

� = f(r) + g(t) : (7.19)

The �rst term in the metri (7.13) is therefore �e

2f(r)

e

2g(t)

dt

2

. But we ould always simply

rede�ne our time oordinate by replaing dt! e

�g(t)

dt; in other words, we are free to hoose

t suh that g(t) = 0, whene �(t; r) = f(r). We therefore have

ds

2

= �e

2�(r)

dt

2

+ e

�(r)

dr

2

+ r

2

d


2

: (7.20)

All of the metri omponents are independent of the oordinate t. We have therefore proven

a ruial result: any spherially symmetri vauum metri possesses a timelike Killing vetor.

This property is so interesting that it gets its own name: a metri whih possesses a

timelike Killing vetor is alled stationary. There is also a more restritive property: a

metri is alled stati if it possesses a timelike Killing vetor whih is orthogonal to a

family of hypersurfaes. (A hypersurfae in an n-dimensional manifold is simply an (n� 1)-

dimensional submanifold.) The metri (7.20) is not only stationary, but also stati; the

Killing vetor �eld �

0

is orthogonal to the surfaes t = onst (sine there are no ross terms

suh as dtdr and so on). Roughly speaking, a stati metri is one in whih nothing is moving,

while a stationary metri allows things to move but only in a symmetri way. For example,

the stati spherially symmetri metri (7.20) will desribe non-rotating stars or blak holes,

while rotating systems (whih keep rotating in the same way at all times) will be desribed

by stationary metris. It's hard to remember whih word goes with whih onept, but the

distintion between the two onepts should be understandable.

Let's keep going with �nding the solution. Sine both R

00

and R

11

vanish, we an write

0 = e

2(���)

R

00

+R

11

=

2

r

(�

1

� + �

1

�) ; (7.21)
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whih implies � = �� + onstant. One again, we an get rid of the onstant by saling

our oordinates, so we have

� = �� : (7.22)

Next let us turn to R

22

= 0, whih now reads

e

2�

(2r�

1

� + 1) = 1 : (7.23)

This is ompletely equivalent to

�

1

(re

2�

) = 1 : (7.24)

We an solve this to obtain

e

2�

= 1 +

�

r

; (7.25)

where � is some undetermined onstant. With (7.22) and (7.25), our metri beomes

ds

2

= �

�

1 +

�

r

�

dt

2

+

�

1 +

�

r

�

�1

dr

2

+ r

2

d


2

: (7.26)

We now have no freedom left exept for the single onstant �, so this form better solve the

remaining equations R

00

= 0 and R

11

= 0; it is straightforward to hek that it does, for any

value of �.

The only thing left to do is to interpret the onstant � in terms of some physial param-

eter. The most important use of a spherially symmetri vauum solution is to represent the

spaetime outside a star or planet or whatnot. In that ase we would expet to reover the

weak �eld limit as r!1. In this limit, (7.26) implies

g

00

(r!1) = �

�

1 +

�

r

�

;

g

rr

(r!1) =

�

1�

�

r

�

: (7.27)

The weak �eld limit, on the other hand, has

g

00

= � (1 + 2�) ;

g

rr

= (1 � 2�) ; (7.28)

with the potential � = �GM=r. Therefore the metris do agree in this limit, if we set

� = �2GM .

Our �nal result is the elebrated Shwarzshild metri,

ds

2

= �

�

1 �

2GM

r

�

dt

2

+

�

1�

2GM

r

�

�1

dr

2

+ r

2

d


2

: (7.29)

This is true for any spherially symmetri vauum solution to Einstein's equations; M fun-

tions as a parameter, whih we happen to know an be interpreted as the onventional
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Newtonian mass that we would measure by studying orbits at large distanes from the grav-

itating soure. Note that as M ! 0 we reover Minkowski spae, whih is to be expeted.

Note also that the metri beomes progressively Minkowskian as we go to r ! 1; this

property is known as asymptoti atness.

The fat that the Shwarzshild metri is not just a good solution, but is the unique

spherially symmetri vauum solution, is known asBirkho�'s theorem. It is interesting to

note that the result is a stati metri. We did not say anything about the soure exept that

it be spherially symmetri. Spei�ally, we did not demand that the soure itself be stati;

it ould be a ollapsing star, as long as the ollapse were symmetri. Therefore a proess

suh as a supernova explosion, whih is basially spherial, would be expeted to generate

very little gravitational radiation (in omparison to the amount of energy released through

other hannels). This is the same result we would have obtained in eletromagnetism, where

the eletromagneti �elds around a spherial harge distribution do not depend on the radial

distribution of the harges.

Before exploring the behavior of test partiles in the Shwarzshild geometry, we should

say something about singularities. From the form of (7.29), the metri oeÆients beome

in�nite at r = 0 and r = 2GM | an apparent sign that something is going wrong. The

metri oeÆients, of ourse, are oordinate-dependent quantities, and as suh we should

not make too muh of their values; it is ertainly possible to have a \oordinate singularity"

whih results from a breakdown of a spei� oordinate system rather than the underlying

manifold. An example ours at the origin of polar oordinates in the plane, where the

metri ds

2

= dr

2

+ r

2

d�

2

beomes degenerate and the omponent g

��

= r

�2

of the inverse

metri blows up, even though that point of the manifold is no di�erent from any other.

What kind of oordinate-independent signal should we look for as a warning that some-

thing about the geometry is out of ontrol? This turns out to be a diÆult question to

answer, and entire books have been written about the nature of singularities in general rel-

ativity. We won't go into this issue in detail, but rather turn to one simple riterion for

when something has gone wrong | when the urvature beomes in�nite. The urvature is

measured by the Riemann tensor, and it is hard to say when a tensor beomes in�nite, sine

its omponents are oordinate-dependent. But from the urvature we an onstrut various

salar quantities, and sine salars are oordinate-independent it will be meaningful to say

that they beome in�nite. This simplest suh salar is the Rii salar R = g

��

R

��

, but we

an also onstrut higher-order salars suh as R

��

R

��

, R

����

R

����

, R

����

R

����

R

��

��

, and

so on. If any of these salars (not neessarily all of them) go to in�nity as we approah some

point, we will regard that point as a singularity of the urvature. We should also hek that

the point is not \in�nitely far away"; that is, that it an be reahed by travelling a �nite

distane along a urve.

We therefore have a suÆient ondition for a point to be onsidered a singularity. It is
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not a neessary ondition, however, and it is generally harder to show that a given point is

nonsingular; for our purposes we will simply test to see if geodesis are well-behaved at the

point in question, and if so then we will onsider the point nonsingular. In the ase of the

Shwarzshild metri (7.29), diret alulation reveals that

R

����

R

����

=

12G

2

M

2

r

6

: (7.30)

This is enough to onvine us that r = 0 represents an honest singularity. At the other

trouble spot, r = 2GM , you ould hek and see that none of the urvature invariants blows

up. We therefore begin to think that it is atually not singular, and we have simply hosen a

bad oordinate system. The best thing to do is to transform to more appropriate oordinates

if possible. We will soon see that in this ase it is in fat possible, and the surfae r = 2GM

is very well-behaved (although interesting) in the Shwarzshild metri.

Having worried a little about singularities, we should point out that the behavior of

Shwarzshild at r � 2GM is of little day-to-day onsequene. The solution we derived

is valid only in vauum, and we expet it to hold outside a spherial body suh as a star.

However, in the ase of the Sun we are dealing with a body whih extends to a radius of

R

�

= 10

6

GM

�

: (7.31)

Thus, r = 2GM

�

is far inside the solar interior, where we do not expet the Shwarzshild

metri to imply. In fat, realisti stellar interior solutions are of the form

ds

2

= �

 

1�

2Gm(r)

r

!

dt

2

+

 

1 �

2Gm(r)

r

!

�1

dr

2

+ r

2

d


2

: (7.32)

See Shutz for details. Here m(r) is a funtion of r whih goes to zero faster than r itself, so

there are no singularities to deal with at all. Nevertheless, there are objets for whih the full

Shwarzshild metri is required | blak holes | and therefore we will let our imaginations

roam far outside the solar system in this setion.

The �rst step we will take to understand this metri more fully is to onsider the behavior

of geodesis. We need the nonzero Christo�el symbols for Shwarzshild:

�

1

00

=

GM

r

3

(r � 2GM) �

1

11

=

�GM

r(r�2GM)

�

0

01

=

GM

r(r�2GM)

�

2

12

=

1

r

�

1

22

= �(r � 2GM) �

3

13

=

1

r

�

1

33

= �(r � 2GM) sin

2

� �

2

33

= � sin � os � �

3

23

=

os �

sin �

: (7.33)

The geodesi equation therefore turns into the following four equations, where � is an aÆne

parameter:

d

2

t

d�

2

+

2GM

r(r � 2GM)

dr

d�

dt

d�

= 0 ; (7.34)
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d

2

r

d�

2

+

GM

r

3

(r � 2GM)

 

dt

d�

!

2

�

GM

r(r � 2GM)

 

dr

d�

!

2

�(r � 2GM)

2

4

 

d�

d�

!

2

+ sin

2

�

 

d�

d�

!

2

3

5

= 0 ; (7.35)

d

2

�

d�

2

+

2

r

d�

d�

dr

d�

� sin � os �

 

d�

d�

!

2

= 0 ; (7.36)

and

d

2

�

d�

2

+

2

r

d�

d�

dr

d�

+ 2

os �

sin �

d�

d�

d�

d�

= 0 : (7.37)

There does not seem to be muh hope for simply solving this set of oupled equations by

inspetion. Fortunately our task is greatly simpli�ed by the high degree of symmetry of the

Shwarzshild metri. We know that there are four Killing vetors: three for the spherial

symmetry, and one for time translations. Eah of these will lead to a onstant of the motion

for a free partile; if K

�

is a Killing vetor, we know that

K

�

dx

�

d�

= onstant : (7.38)

In addition, there is another onstant of the motion that we always have for geodesis; metri

ompatibility implies that along the path the quantity

� = �g

��

dx

�

d�

dx

�

d�

(7.39)

is onstant. Of ourse, for a massive partile we typially hoose � = � , and this relation

simply beomes � = �g

��

U

�

U

�

= +1. For a massless partile we always have � = 0. We will

also be onerned with spaelike geodesis (even though they do not orrespond to paths of

partiles), for whih we will hoose � = �1.

Rather than immediatelywriting out expliit expressions for the four onserved quantities

assoiated with Killing vetors, let's think about what they are telling us. Notie that the

symmetries they represent are also present in at spaetime, where the onserved quantities

they lead to are very familiar. Invariane under time translations leads to onservation of

energy, while invariane under spatial rotations leads to onservation of the three omponents

of angular momentum. Essentially the same applies to the Shwarzshild metri. We an

think of the angular momentum as a three-vetor with a magnitude (one omponent) and

diretion (two omponents). Conservation of the diretion of angular momentum means

that the partile will move in a plane. We an hoose this to be the equatorial plane of

our oordinate system; if the partile is not in this plane, we an rotate oordinates until

it is. Thus, the two Killing vetors whih lead to onservation of the diretion of angular

momentum imply

� =

�

2

: (7.40)
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The two remaining Killing vetors orrespond to energy and the magnitude of angular mo-

mentum. The energy arises from the timelike Killing vetor K = �

t

, or

K

�

=

�

�

�

1�

2GM

r

�

; 0; 0; 0

�

: (7.41)

The Killing vetor whose onserved quantity is the magnitude of the angular momentum is

L = �

�

, or

L

�

=

�

0; 0; 0; r

2

sin

2

�

�

: (7.42)

Sine (7.40) implies that sin � = 1 along the geodesis of interest to us, the two onserved

quantities are

�

1�

2GM

r

�

dt

d�

= E ; (7.43)

and

r

2

d�

d�

= L : (7.44)

For massless partiles these an be thought of as the energy and angular momentum; for

massive partiles they are the energy and angular momentum per unit mass of the partile.

Note that the onstany of (7.44) is the GR equivalent of Kepler's seond law (equal areas

are swept out in equal times).

Together these onserved quantities provide a onvenient way to understand the orbits of

partiles in the Shwarzshild geometry. Let us expand the expression (7.39) for � to obtain

�

�

1�

2GM

r

�

 

dt

d�

!

2

+

�

1�

2GM

r

�

�1

 

dr

d�

!

2

+ r

2

 

d�

d�

!

2

= �� : (7.45)

If we multiply this by (1� 2GM=r) and use our expressions for E and L, we obtain

�E

2

+

 

dr

d�

!

2

+

�

1�

2GM

r

�

 

L

2

r

2

+ �

!

= 0 : (7.46)

This is ertainly progress, sine we have taken a messy system of oupled equations and

obtained a single equation for r(�). It looks even nier if we rewrite it as

1

2

 

dr

d�

!

2

+ V (r) =

1

2

E

2

; (7.47)

where

V (r) =

1

2

�� �

GM

r

+

L

2

2r

2

�

GML

2

r

3

: (7.48)

In (7.47) we have preisely the equation for a lassial partile of unit mass and \energy"

1

2

E

2

moving in a one-dimensional potential given by V (r). (The true energy per unit mass

is E, but the e�etive potential for the oordinate r responds to

1

2

E

2

.)
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Of ourse, our physial situation is quite di�erent from a lassial partile moving in one

dimension. The trajetories under onsideration are orbits around a star or other objet:

λ
λr(   )

r(   )

The quantities of interest to us are not only r(�), but also t(�) and �(�). Nevertheless,

we an go a long way toward understanding all of the orbits by understanding their radial

behavior, and it is a great help to redue this behavior to a problem we know how to solve.

A similar analysis of orbits in Newtonian gravity would have produed a similar result;

the general equation (7.47) would have been the same, but the e�etive potential (7.48) would

not have had the last term. (Note that this equation is not a power series in 1=r, it is exat.)

In the potential (7.48) the �rst term is just a onstant, the seond term orresponds exatly

to the Newtonian gravitational potential, and the third term is a ontribution from angular

momentumwhih takes the same form in Newtonian gravity and general relativity. The last

term, the GR ontribution, will turn out to make a great deal of di�erene, espeially at

small r.

Let us examine the kinds of possible orbits, as illustrated in the �gures. There are

di�erent urves V (r) for di�erent values of L; for any one of these urves, the behavior of

the orbit an be judged by omparing the

1

2

E

2

to V (r). The general behavior of the partile

will be to move in the potential until it reahes a \turning point" where V (r) =

1

2

E

2

, where

it will begin moving in the other diretion. Sometimes there may be no turning point to

hit, in whih ase the partile just keeps going. In other ases the partile may simply move

in a irular orbit at radius r



= onst; this an happen if the potential is at, dV=dr = 0.

Di�erentiating (7.48), we �nd that the irular orbits our when

�GMr

2



� L

2

r



+ 3GML

2

 = 0 ; (7.49)

where  = 0 in Newtonian gravity and  = 1 in general relativity. Cirular orbits will be

stable if they orrespond to a minimum of the potential, and unstable if they orrespond

to a maximum. Bound orbits whih are not irular will osillate around the radius of the

stable irular orbit.

Turning to Newtonian gravity, we �nd that irular orbits appear at

r



=

L

2

�GM

: (7.50)
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For massless partiles � = 0, and there are no irular orbits; this is onsistent with the

�gure, whih illustrates that there are no bound orbits of any sort. Although it is somewhat

obsured in this oordinate system, massless partiles atually move in a straight line, sine

the Newtonian gravitational fore on a massless partile is zero. (Of ourse the standing of

massless partiles in Newtonian theory is somewhat problemati, but we will ignore that for

now.) In terms of the e�etive potential, a photon with a given energy E will ome in from

r =1 and gradually \slow down" (atually dr=d� will derease, but the speed of light isn't

hanging) until it reahes the turning point, when it will start moving away bak to r =1.

The lower values of L, for whih the photon will ome loser before it starts moving away,

are simply those trajetories whih are initially aimed loser to the gravitating body. For

massive partiles there will be stable irular orbits at the radius (7.50), as well as bound

orbits whih osillate around this radius. If the energy is greater than the asymptoti value

E = 1, the orbits will be unbound, desribing a partile that approahes the star and then

reedes. We know that the orbits in Newton's theory are oni setions | bound orbits are

either irles or ellipses, while unbound ones are either parabolas or hyperbolas | although

we won't show that here.

In general relativity the situation is di�erent, but only for r suÆiently small. Sine the

di�erene resides in the term �GML

2

=r

3

, as r !1 the behaviors are idential in the two

theories. But as r ! 0 the potential goes to �1 rather than +1 as in the Newtonian

ase. At r = 2GM the potential is always zero; inside this radius is the blak hole, whih we

will disuss more thoroughly later. For massless partiles there is always a barrier (exept

for L = 0, for whih the potential vanishes identially), but a suÆiently energeti photon

will nevertheless go over the barrier and be dragged inexorably down to the enter. (Note

that \suÆiently energeti" means \in omparison to its angular momentum" | in fat the

frequeny of the photon is immaterial, only the diretion in whih it is pointing.) At the top

of the barrier there are unstable irular orbits. For � = 0,  = 1, we an easily solve (7.49)

to obtain

r



= 3GM : (7.51)

This is borne out by the �gure, whih shows a maximum of V (r) at r = 3GM for every L.

This means that a photon an orbit forever in a irle at this radius, but any perturbation

will ause it to y away either to r = 0 or r =1.

For massive partiles there are one again di�erent regimes depending on the angular

momentum. The irular orbits are at

r



=

L

2

�

p

L

4

� 12G

2

M

2

L

2

2GM

: (7.52)

For large L there will be two irular orbits, one stable and one unstable. In the L ! 1
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limit their radii are given by

r



=

L

2

� L

2

(1 � 6G

2

M

2

=L

2

)

2GM

=

 

L

2

GM

; 3GM

!

: (7.53)

In this limit the stable irular orbit beomes farther and farther away, while the unstable

one approahes 3GM , behavior whih parallels the massless ase. As we derease L the two

irular orbits ome loser together; they oinide when the disriminant in (7.52) vanishes,

at

L =

p

12GM ; (7.54)

for whih

r



= 6GM ; (7.55)

and disappear entirely for smaller L. Thus 6GM is the smallest possible radius of a stable

irular orbit in the Shwarzshild metri. There are also unbound orbits, whih ome in

from in�nity and turn around, and bound but nonirular ones, whih osillate around the

stable irular radius. Note that suh orbits, whih would desribe exat oni setions in

Newtonian gravity, will not do so in GR, although we would have to solve the equation for

d�=dt to demonstrate it. Finally, there are orbits whih ome in from in�nity and ontinue

all the way in to r = 0; this an happen either if the energy is higher than the barrier, or for

L <

p

12GM , when the barrier goes away entirely.

We have therefore found that the Shwarzshild solution possesses stable irular orbits

for r > 6GM and unstable irular orbits for 3GM < r < 6GM . It's important to remember

that these are only the geodesis; there is nothing to stop an aelerating partile from

dipping below r = 3GM and emerging, as long as it stays beyond r = 2GM .

Most experimental tests of general relativity involve the motion of test partiles in the

solar system, and hene geodesis of the Shwarzshild metri; this is therefore a good plae

to pause and onsider these tests. Einstein suggested three tests: the deetion of light,

the preession of perihelia, and gravitational redshift. The deetion of light is observable

in the weak-�eld limit, and therefore is not really a good test of the exat form of the

Shwarzshild geometry. Observations of this deetion have been performed during elipses

of the Sun, with results whih agree with the GR predition (although it's not an espeially

lean experiment). The preession of perihelia reets the fat that nonirular orbits are

not losed ellipses; to a good approximation they are ellipses whih preess, desribing a

ower pattern.

Using our geodesi equations, we ould solve for d�=d� as a power series in the eentriity

e of the orbit, and from that obtain the apsidal frequeny !

a

, de�ned as 2� divided by the

time it takes for the ellipse to preess one around. For details you an look in Weinberg;

the answer is

!

a

=

3(GM)

3=2



2

(1� e

2

)r

5=2

; (7.56)
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where we have restored the  to make it easier to ompare with observation. (It is a good

exerise to derive this yourself to lowest nonvanishing order, in whih ase the e

2

is missing.)

Historially the preession of Merury was the �rst test of GR. For Merury the relevant

numbers are

GM

�



2

= 1:48 � 10

5

m ;

a = 5:55 � 10

12

m ; (7.57)

and of ourse  = 3:00 � 10

10

m/se. This gives !

a

= 2:35 � 10

�14

se

�1

. In other words,

the major axis of Merury's orbit preesses at a rate of 42:9 arses every 100 years. The

observed value is 5601 arses/100 yrs. However, muh of that is due to the preession

of equinoxes in our geoentri oordinate system; 5025 arses/100 yrs, to be preise. The

gravitational perturbations of the other planets ontribute an additional 532 arses/100 yrs,

leaving 43 arses/100 yrs to be explained by GR, whih it does quite well.

The gravitational redshift, as we have seen, is another e�et whih is present in the weak

�eld limit, and in fat will be predited by any theory of gravity whih obeys the Priniple

of Equivalene. However, this only applies to small enough regions of spaetime; over larger

distanes, the exat amount of redshift will depend on the metri, and thus on the theory

under question. It is therefore worth omputing the redshift in the Shwarzshild geometry.

We onsider two observers who are not moving on geodesis, but are stuk at �xed spatial

oordinate values (r

1

; �

1

; �

1

) and (r

2

; �

2

; �

2

). Aording to (7.45), the proper time of observer

i will be related to the oordinate time t by

d�

i

dt

=

�

1 �

2GM

r

i

�

1=2

: (7.58)

Suppose that the observer O

1

emits a light pulse whih travels to the observer O

2

, suh that

O

1

measures the time between two suessive rests of the light wave to be ��

1

. Eah rest

follows the same path to O

2

, exept that they are separated by a oordinate time

�t =

�

1�

2GM

r

1

�

�1=2

��

1

: (7.59)
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This separation in oordinate time does not hange along the photon trajetories, but the

seond observer measures a time between suessive rests given by

��

2

=

�

1 �

2GM

r

2

�

1=2

�t

=

 

1� 2GM=r

2

1� 2GM=r

1

!

1=2

��

1

: (7.60)

Sine these intervals ��

i

measure the proper time between two rests of an eletromagneti

wave, the observed frequenies will be related by

!

2

!

1

=

��

1

��

2

=

 

1� 2GM=r

1

1� 2GM=r

2

!

1=2

: (7.61)

This is an exat result for the frequeny shift; in the limit r >> 2GM we have

!

2

!

1

= 1�

GM

r

1

+

GM

r

2

= 1 + �

1

� �

2

: (7.62)

This tells us that the frequeny goes down as � inreases, whih happens as we limb out

of a gravitational �eld; thus, a redshift. You an hek that it agrees with our previous

alulation based on the equivalene priniple.

Sine Einstein's proposal of the three lassi tests, further tests of GR have been proposed.

The most famous is of ourse the binary pulsar, disussed in the previous setion. Another

is the gravitational time delay, disovered by (and observed by) Shapiro. This is just the

fat that the time elapsed along two di�erent trajetories between two events need not be

the same. It has been measured by reeting radar signals o� of Venus and Mars, and one

again is onsistent with the GR predition. One e�et whih has not yet been observed is

the Lense-Thirring, or frame-dragging e�et. There has been a long-term e�ort devoted to

a proposed satellite, dubbed Gravity Probe B, whih would involve extraordinarily preise

gyrosopes whose preession ould be measured and the ontribution from GR sorted out. It

has a ways to go before being launhed, however, and the survival of suh projets is always

year-to-year.

We now know something about the behavior of geodesis outside the troublesome radius

r = 2GM , whih is the regime of interest for the solar system and most other astrophysial

situations. We will next turn to the study of objets whih are desribed by the Shwarzshild

solution even at radii smaller than 2GM | blak holes. (We'll use the term \blak hole"

for the moment, even though we haven't introdued a preise meaning for suh an objet.)
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One way of understanding a geometry is to explore its ausal struture, as de�ned by the

light ones. We therefore onsider radial null urves, those for whih � and � are onstant

and ds

2

= 0:

ds

2

= 0 = �

�

1�

2GM

r

�

dt

2

+

�

1 �

2GM

r

�

�1

dr

2

; (7.63)

from whih we see that

dt

dr

= �

�

1�

2GM

r

�

�1

: (7.64)

This of ourse measures the slope of the light ones on a spaetime diagram of the t-r plane.

For large r the slope is �1, as it would be in at spae, while as we approah r = 2GM we

get dt=dr ! �1, and the light ones \lose up":

r

t

2GM

Thus a light ray whih approahes r = 2GM never seems to get there, at least in this

oordinate system; instead it seems to asymptote to this radius.

As we will see, this is an illusion, and the light ray (or a massive partile) atually has no

trouble reahing r = 2GM . But an observer far away would never be able to tell. If we stayed

outside while an intrepid observational general relativist dove into the blak hole, sending

bak signals all the time, we would simply see the signals reah us more and more slowly. This

should be lear from the pitures, and is on�rmed by our omputation of ��

1

=��

2

when we

disussed the gravitational redshift (7.61). As infalling astronauts approah r = 2GM , any

�xed interval ��

1

of their proper time orresponds to a longer and longer interval ��

2

from

our point of view. This ontinues forever; we would never see the astronaut ross r = 2GM ,

we would just see them move more and more slowly (and beome redder and redder, almost

as if they were embarrassed to have done something as stupid as diving into a blak hole).

The fat that we never see the infalling astronauts reah r = 2GM is a meaningful

statement, but the fat that their trajetory in the t-r plane never reahes there is not. It

is highly dependent on our oordinate system, and we would like to ask a more oordinate-

independent question (suh as, do the astronauts reah this radius in a �nite amount of their

proper time?). The best way to do this is to hange oordinates to a system whih is better
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r

t

2GM

∆τ

∆τ

∆τ

∆τ   > ∆τ

1

1

2

2
’

2

behaved at r = 2GM . There does exist a set of suh oordinates, whih we now set out to

�nd. There is no way to \derive" a oordinate transformation, of ourse, we just say what

the new oordinates are and plug in the formulas. But we will develop these oordinates in

several steps, in hopes of making the hoies seem somewhat motivated.

The problem with our urrent oordinates is that dt=dr !1 along radial null geodesis

whih approah r = 2GM ; progress in the r diretion beomes slower and slower with respet

to the oordinate time t. We an try to �x this problem by replaing t with a oordinate

whih \moves more slowly" along null geodesis. First notie that we an expliitly solve

the ondition (7.64) haraterizing radial null urves to obtain

t = �r

�

+ onstant ; (7.65)

where the tortoise oordinate r

�

is de�ned by

r

�

= r + 2GM ln

�

r

2GM

� 1

�

: (7.66)

(The tortoise oordinate is only sensibly related to r when r � 2GM , but beyond there our

oordinates aren't very good anyway.) In terms of the tortoise oordinate the Shwarzshild

metri beomes

ds

2

=

�

1 �

2GM

r

�

�

�dt

2

+ dr

�

2

�

+ r

2

d


2

; (7.67)

where r is thought of as a funtion of r

�

. This represents some progress, sine the light ones

now don't seem to lose up; furthermore, none of the metri oeÆients beomes in�nite at

r = 2GM (although both g

tt

and g

r

�

r

�

beome zero). The prie we pay, however, is that the

surfae of interest at r = 2GM has just been pushed to in�nity.

Our next move is to de�ne oordinates whih are naturally adapted to the null geodesis.

If we let

~u = t+ r

�
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8r* = -

t

r = 2GM

r*

~v = t� r

�

; (7.68)

then infalling radial null geodesis are haraterized by ~u = onstant, while the outgoing

ones satisfy ~v = onstant. Now onsider going bak to the original radial oordinate r,

but replaing the timelike oordinate t with the new oordinate ~u. These are known as

Eddington-Finkelstein oordinates. In terms of them the metri is

ds

2

= �

�

1�

2GM

r

�

d~u

2

+ (d~udr + drd~u) + r

2

d


2

: (7.69)

Here we see our �rst sign of real progress. Even though the metri oeÆient g

~u~u

vanishes

at r = 2GM , there is no real degeneray; the determinant of the metri is

g = �r

4

sin

2

� ; (7.70)

whih is perfetly regular at r = 2GM . Therefore the metri is invertible, and we see one

and for all that r = 2GM is simply a oordinate singularity in our original (t; r; �; �) system.

In the Eddington-Finkelstein oordinates the ondition for radial null urves is solved by

d~u

dr

=

(

0 ; (infalling)

2

�

1�

2GM

r

�

�1

: (outgoing)

(7.71)

We an therefore see what has happened: in this oordinate system the light ones remain

well-behaved at r = 2GM , and this surfae is at a �nite oordinate value. There is no

problem in traing the paths of null or timelike partiles past the surfae. On the other

hand, something interesting is ertainly going on. Although the light ones don't lose up,

they do tilt over, suh that for r < 2GM all future-direted paths are in the diretion of

dereasing r.

The surfae r = 2GM , while being loally perfetly regular, globally funtions as a point

of no return | one a test partile dips below it, it an never ome bak. For this reason

r = 2GM is known as the event horizon; no event at r � 2GM an inuene any other
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u

r = 2GM

u = 

r = 0

const

~

~

r

event at r > 2GM . Notie that the event horizon is a null surfae, not a timelike one. Notie

also that sine nothing an esape the event horizon, it is impossible for us to \see inside"

| thus the name blak hole.

Let's onsider what we have done. Ating under the suspiion that our oordinates may

not have been good for the entire manifold, we have hanged from our original oordinate t

to the new one ~u, whih has the nie property that if we derease r along a radial urve null

urve ~u = onstant, we go right through the event horizon without any problems. (Indeed, a

loal observer atually making the trip would not neessarily know when the event horizon

had been rossed | the loal geometry is no di�erent than anywhere else.) We therefore

onlude that our suspiion was orret and our initial oordinate system didn't do a good

job of overing the entire manifold. The region r � 2GM should ertainly be inluded in

our spaetime, sine physial partiles an easily reah there and pass through. However,

there is no guarantee that we are �nished; perhaps there are other diretions in whih we

an extend our manifold.

In fat there are. Notie that in the (~u; r) oordinate system we an ross the event

horizon on future-direted paths, but not on past-direted ones. This seems unreasonable,

sine we started with a time-independent solution. But we ould have hosen ~v instead of

~u, in whih ase the metri would have been

ds

2

= �

�

1�

2GM

r

�

d~v

2

� (d~vdr + drd~v) + r

2

d


2

: (7.72)

Now we an one again pass through the event horizon, but this time only along past-direted

urves.

This is perhaps a surprise: we an onsistently follow either future-direted or past-

direted urves through r = 2GM , but we arrive at di�erent plaes. It was atually to be

expeted, sine from the de�nitions (7.68), if we keep ~u onstant and derease r we must

have t ! +1, while if we keep ~v onstant and derease r we must have t ! �1. (The

tortoise oordinate r

�

goes to �1 as r ! 2GM .) So we have extended spaetime in two

di�erent diretions, one to the future and one to the past.
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r = 2GMr = 0

const

~

~

r

v

v = 

The next step would be to follow spaelike geodesis to see if we would unover still more

regions. The answer is yes, we would reah yet another piee of the spaetime, but let's

shortut the proess by de�ning oordinates that are good all over. A �rst guess might be

to use both ~u and ~v at one (in plae of t and r), whih leads to

ds

2

=

1

2

�

1�

2GM

r

�

(d~ud~v + d~vd~u) + r

2

d


2

; (7.73)

with r de�ned impliitly in terms of ~u and ~v by

1

2

(~u� ~v) = r + 2GM ln

�

r

2GM

� 1

�

: (7.74)

We have atually re-introdued the degeneray with whih we started out; in these oordi-

nates r = 2GM is \in�nitely far away" (at either ~u = �1 or ~v = +1). The thing to do is

to hange to oordinates whih pull these points into �nite oordinate values; a good hoie

is

u

0

= e

~u=4GM

v

0

= e

�~v=4GM

; (7.75)

whih in terms of our original (t; r) system is

u

0

=

�

r

2GM

� 1

�

1=2

e

(r+t)=4GM

v

0

=

�

r

2GM

� 1

�

1=2

e

(r�t)=4GM

: (7.76)

In the (u

0

; v

0

; �; �) system the Shwarzshild metri is

ds

2

= �

16G

3

M

3

r

e

�r=2GM

(du

0

dv

0

+ dv

0

du

0

) + r

2

d


2

: (7.77)

Finally the nonsingular nature of r = 2GM beomes ompletely manifest; in this form none

of the metri oeÆients behave in any speial way at the event horizon.
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Both u

0

and v

0

are null oordinates, in the sense that their partial derivatives �=�u

0

and

�=�v

0

are null vetors. There is nothing wrong with this, sine the olletion of four partial

derivative vetors (two null and two spaelike) in this system serve as a perfetly good basis

for the tangent spae. Nevertheless, we are somewhat more omfortable working in a system

where one oordinate is timelike and the rest are spaelike. We therefore de�ne

u =

1

2

(u

0

� v

0

)

=

�

r

2GM

� 1

�

1=2

e

r=4GM

osh(t=4GM) (7.78)

and

v =

1

2

(u

0

+ v

0

)

=

�

r

2GM

� 1

�

1=2

e

r=4GM

sinh(t=4GM) ; (7.79)

in terms of whih the metri beomes

ds

2

=

32G

3

M

3

r

e

�r=2GM

(�dv

2

+ du

2

) + r

2

d


2

; (7.80)

where r is de�ned impliitly from

(u

2

� v

2

) =

�

r

2GM

� 1

�

e

r=2GM

: (7.81)

The oordinates (v; u; �; �) are known as Kruskal oordinates, or sometimes Kruskal-

Szekres oordinates. Note that v is the timelike oordinate.

The Kruskal oordinates have a number of miraulous properties. Like the (t; r

�

) oor-

dinates, the radial null urves look like they do in at spae:

v = �u+ onstant : (7.82)

Unlike the (t; r

�

) oordinates, however, the event horizon r = 2GM is not in�nitely far away;

in fat it is de�ned by

v = �u ; (7.83)

onsistent with it being a null surfae. More generally, we an onsider the surfaes r = on-

stant. From (7.81) these satisfy

u

2

� v

2

= onstant : (7.84)

Thus, they appear as hyperbolae in the u-v plane. Furthermore, the surfaes of onstant t

are given by

v

u

= tanh(t=4GM) ; (7.85)
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whih de�nes straight lines through the origin with slope tanh(t=4GM). Note that as t !

�1 this beomes the same as (7.83); therefore these surfaes are the same as r = 2GM .

Now, our oordinates (v; u) should be allowed to range over every value they an take

without hitting the real singularity at r = 2GM ; the allowed region is therefore �1 �

u � 1 and v

2

< u

2

+ 1. We an now draw a spaetime diagram in the v-u plane (with

� and � suppressed), known as a \Kruskal diagram", whih represents the entire spaetime

orresponding to the Shwarzshild metri.

88
8 8

u

v

r = 0

r = 0

constr = 
t = const

r = 2GM

r = 2GM r = 2GM

r = 2GM

t = - t = +

t = -t = +

Eah point on the diagram is a two-sphere.
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Our original oordinates (t; r) were only good for r > 2GM , whih is only a part of the

manifold portrayed on the Kruskal diagram. It is onvenient to divide the diagram into four

regions:

II

IV

III

I

The region in whih we started was region I; by following future-direted null rays we reahed

region II, and by following past-direted null rays we reahed region III. If we had explored

spaelike geodesis, we would have been led to region IV. The de�nitions (7.78) and (7.79)

whih relate (u; v) to (t; r) are really only good in region I; in the other regions it is neessary

to introdue appropriate minus signs to prevent the oordinates from beoming imaginary.

Having extended the Shwarzshild geometry as far as it will go, we have desribed a

remarkable spaetime. Region II, of ourse, is what we think of as the blak hole. One

anything travels from region I into II, it an never return. In fat, every future-direted path

in region II ends up hitting the singularity at r = 0; one you enter the event horizon, you are

utterly doomed. This is worth stressing; not only an you not esape bak to region I, you

annot even stop yourself from moving in the diretion of dereasing r, sine this is simply

the timelike diretion. (This ould have been seen in our original oordinate system; for

r < 2GM , t beomes spaelike and r beomes timelike.) Thus you an no more stop moving

toward the singularity than you an stop getting older. Sine proper time is maximized along

a geodesi, you will live the longest if you don't struggle, but just relax as you approah

the singularity. Not that you will have long to relax. (Nor that the voyage will be very

relaxing; as you approah the singularity the tidal fores beome in�nite. As you fall toward

the singularity your feet and head will be pulled apart from eah other, while your torso

is squeezed to in�nitesimal thinness. The grisly demise of an astrophysiist falling into a

blak hole is detailed in Misner, Thorne, and Wheeler, setion 32.6. Note that they use

orthonormal frames [not that it makes the trip any more enjoyable℄.)

Regions III and IV might be somewhat unexpeted. Region III is simply the time-reverse

of region II, a part of spaetime from whih things an esape to us, while we an never get

there. It an be thought of as a \white hole." There is a singularity in the past, out of whih

the universe appears to spring. The boundary of region III is sometimes alled the past
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event horizon, while the boundary of region II is alled the future event horizon. Region IV,

meanwhile, annot be reahed from our region I either forward or bakward in time (nor an

anybody from over there reah us). It is another asymptotially at region of spaetime, a

mirror image of ours. It an be thought of as being onneted to region I by a \wormhole," a

nek-like on�guration joining two distint regions. Consider sliing up the Kruskal diagram

into spaelike surfaes of onstant v:

A

B

C

D

E

Now we an draw pitures of eah slie, restoring one of the angular oordinates for larity:

A B C D E

r = 2GM

v

So the Shwarzshild geometry really desribes two asymptotially at regions whih reah

toward eah other, join together via a wormhole for a while, and then disonnet. But the

wormhole loses up too quikly for any timelike observer to ross it from one region into the

next.

It might seem somewhat implausible, this story about two separate spaetimes reahing

toward eah other for a while and then letting go. In fat, it is not expeted to happen in

the real world, sine the Shwarzshild metri does not aurately model the entire universe.
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Remember that it is only valid in vauum, for example outside a star. If the star has a radius

larger than 2GM , we need never worry about any event horizons at all. But we believe that

there are stars whih ollapse under their own gravitational pull, shrinking down to below

r = 2GM and further into a singularity, resulting in a blak hole. There is no need for a

white hole, however, beause the past of suh a spaetime looks nothing like that of the full

Shwarzshild solution. Roughly, a Kruskal-like diagram for stellar ollapse would look like

the following:

r = 2GM
r = 0

vacuum
(Schwarzschild)

interior
of star

The shaded region is not desribed by Shwarzshild, so there is no need to fret about white

holes and wormholes.

While we are on the subjet, we an say something about the formation of astrophysial

blak holes from massive stars. The life of a star is a onstant struggle between the inward

pull of gravity and the outward push of pressure. When the star is burning nulear fuel

at its ore, the pressure omes from the heat produed by this burning. (We should put

\burning" in quotes, sine nulear fusion is unrelated to oxidation.) When the fuel is used

up, the temperature delines and the star begins to shrink as gravity starts winning the

struggle. Eventually this proess is stopped when the eletrons are pushed so lose together

that they resist further ompression simply on the basis of the Pauli exlusion priniple (no

two fermions an be in the same state). The resulting objet is alled a white dwarf. If the

mass is suÆiently high, however, even the eletron degeneray pressure is not enough, and

the eletrons will ombine with the protons in a dramati phase transition. The result is a

neutron star, whih onsists of almost entirely neutrons (although the insides of neutron

stars are not understood terribly well). Sine the onditions at the enter of a neutron

star are very di�erent from those on earth, we do not have a perfet understanding of the

equation of state. Nevertheless, we believe that a suÆiently massive neutron star will itself
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be unable to resist the pull of gravity, and will ontinue to ollapse. Sine a uid of neutrons

is the densest material of whih we an presently oneive, it is believed that the inevitable

outome of suh a ollapse is a blak hole.

The proess is summarized in the following diagram of radius vs. mass:

0.5

1.0

1.5

log   R

white
  dwarfs

neutron
  stars

1 2 3 4

D

B

C
A

10

M/M

(km)

The point of the diagram is that, for any given mass M , the star will derease in radius

until it hits the line. White dwarfs are found between points A and B, and neutron stars

between points C and D. Point B is at a height of somewhat less than 1.4 solar masses; the

height of D is less ertain, but probably less than 2 solar masses. The proess of ollapse

is ompliated, and during the evolution the star an lose or gain mass, so the endpoint of

any given star is hard to predit. Nevertheless white dwarfs are all over the plae, neutron

stars are not unommon, and there are a number of systems whih are strongly believed to

ontain blak holes. (Of ourse, you an't diretly see the blak hole. What you an see is

radiation from matter areting onto the hole, whih heats up as it gets loser and emits

radiation.)

We have seen that the Kruskal oordinate system provides a very useful representation

of the Shwarzshild geometry. Before moving on to other types of blak holes, we will

introdue one more way of thinking about this spaetime, the Penrose (or Carter-Penrose,

or onformal) diagram. The idea is to do a onformal transformation whih brings the entire

manifold onto a ompat region suh that we an �t the spaetime on a piee of paper.

Let's begin with Minkowski spae, to see how the tehnique works. The metri in polar

oordinates is

ds

2

= �dt

2

+ dr

2

+ r

2

d


2

: (7.86)

Nothing unusual will happen to the �; � oordinates, but we will want to keep areful trak
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of the ranges of the other two oordinates. In this ase of ourse we have

�1 < t < +1

0 � r < +1 : (7.87)

Tehnially the worldline r = 0 represents a oordinate singularity and should be overed by

a di�erent path, but we all know what is going on so we'll just at like r = 0 is well-behaved.

Our task is made somewhat easier if we swith to null oordinates:

u =

1

2

(t+ r)

v =

1

2

(t� r) ; (7.88)

with orresponding ranges given by

�1 < u < +1

�1 < v < +1

v � u : (7.89)

These ranges are as portrayed in the �gure, on whih eah point represents a 2-sphere of

t

v = const

u = const

r

radius r = u� v. The metri in these oordinates is given by

ds

2

= �2(dudv + dvdu) + (u� v)

2

d


2

: (7.90)

We now want to hange to oordinates in whih \in�nity" takes on a �nite oordinate

value. A good hoie is

U = artanu



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 194

U = arctan u

u

/2

π

π

-   /2

V = artan v : (7.91)

The ranges are now

��=2 < U < +�=2

��=2 < V < +�=2

V � U : (7.92)

To get the metri, use

dU =

du

1 + u

2

; (7.93)

and

os(artan u) =

1

p

1 + u

2

; (7.94)

and likewise for v. We are led to

dudv + dvdu =

1

os

2

U os

2

V

(dUdV + dV dU) : (7.95)

Meanwhile,

(u� v)

2

= (tanU � tan V )

2

=

1

os

2

U os

2

V

(sinU os V � osU sin V )

2

=

1

os

2

U os

2

V

sin

2

(U � V ) : (7.96)

Therefore, the Minkowski metri in these oordinates is

ds

2

=

1

os

2

U os

2

V

h

�2(dUdV + dV dU) + sin

2

(U � V )d


2

i

: (7.97)

This has a ertain appeal, sine the metri appears as a fairly simple expression multi-

plied by an overall fator. We an make it even better by transforming bak to a timelike

oordinate � and a spaelike (radial) oordinate �, via

� = U + V
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� = U � V ; (7.98)

with ranges

�� < � < +�

0 � � < +� : (7.99)

Now the metri is

ds

2

= !

�2

�

�d�

2

+ d�

2

+ sin

2

� d


2

�

; (7.100)

where

! = osU os V

=

1

2

(os � + os�) : (7.101)

The Minkowski metri may therefore be thought of as related by a onformal transfor-

mation to the \unphysial" metri

d�s

2

= !

2

ds

2

= �d�

2

+ d�

2

+ sin

2

� d


2

: (7.102)

This desribes the manifold R� S

3

, where the 3-sphere is maximally symmetri and stati.

There is urvature in this metri, and it is not a solution to the vauum Einstein's equations.

This shouldn't bother us, sine it is unphysial; the true physial metri, obtained by a

onformal transformation, is simply at spaetime. In fat this metri is that of the \Einstein

stati universe," a stati (but unstable) solution to Einstein's equations with a perfet uid

and a osmologial onstant. Of ourse, the full range of oordinates on R � S

3

would

usually be �1 < � < +1, 0 � � � �, while Minkowski spae is mapped into the subspae

de�ned by (7.99). The entire R � S

3

an be drawn as a ylinder, in whih eah irle is a

three-sphere, as shown on the next page.
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η

η = −π

η = π

χ = 0

χ = π

The shaded region represents Minkowski spae. Note that eah point (�; �) on this ylinder

is half of a two-sphere, where the other half is the point (�;��). We an unroll the shaded

region to portray Minkowski spae as a triangle, as shown in the �gure. The is the Penrose

η,

χ,

χ=0

i

I

i

I

constt =

constr =

i -

+

+

0

-

r

t

diagram. Eah point represents a two-sphere.

In fat Minkowski spae is only the interior of the above diagram (inluding � = 0); the

boundaries are not part of the original spaetime. Together they are referred to as onformal

in�nity. The struture of the Penrose diagram allows us to subdivide onformal in�nity
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into a few di�erent regions:

i

+

= future timelike in�nity (� = � ; � = 0)

i

0

= spatial in�nity (� = 0 ; � = �)

i

�

= past timelike in�nity (� = �� ; � = 0)

I

+

= future null in�nity (� = � � � ; 0 < � < �)

I

�

= past null in�nity (� = �� + � ; 0 < � < �)

(I

+

and I

�

are pronouned as \sri-plus" and \sri-minus", respetively.) Note that i

+

,

i

0

, and i

�

are atually points, sine � = 0 and � = � are the north and south poles of S

3

.

Meanwhile I

+

and I

�

are atually null surfaes, with the topology of R� S

2

.

There are a number of important features of the Penrose diagram for Minkowski spae-

time. The points i

+

, and i

�

an be thought of as the limits of spaelike surfaes whose

normals are timelike; onversely, i

0

an be thought of as the limit of timelike surfaes whose

normals are spaelike. Radial null geodesis are at �45

Æ

in the diagram. All timelike

geodesis begin at i

�

and end at i

+

; all null geodesis begin at I

�

and end at I

+

; all spae-

like geodesis both begin and end at i

0

. On the other hand, there an be non-geodesi

timelike urves that end at null in�nity (if they beome \asymptotially null").

It is nie to be able to �t all of Minkowski spae on a small piee of paper, but we don't

really learn muh that we didn't already know. Penrose diagrams are more useful when

we want to represent slightly more interesting spaetimes, suh as those for blak holes.

The original use of Penrose diagrams was to ompare spaetimes to Minkowski spae \at

in�nity" | the rigorous de�nition of \asymptotially at" is basially that a spaetime has

a onformal in�nity just like Minkowski spae. We will not pursue these issues in detail, but

instead turn diretly to analysis of the Penrose diagram for a Shwarzshild blak hole.

We will not go through the neessary manipulations in detail, sine they parallel the

Minkowski ase with onsiderable additional algebrai omplexity. We would start with the

null version of the Kruskal oordinates, in whih the metri takes the form

ds

2

= �

16G

3

M

3

r

e

�r=2GM

(du

0

dv

0

+ dv

0

du

0

) + r

2

d


2

; (7.103)

where r is de�ned impliitly via

u

0

v

0

=

�

r

2GM

� 1

�

e

r=2GM

: (7.104)

Then essentially the same transformation as was used in at spaetime suÆes to bring

in�nity into �nite oordinate values:

u

00

= artan

 

u

0

p

2GM

!
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v

00

= artan

 

v

0

p

2GM

!

; (7.105)

with ranges

��=2 < u

00

< +�=2

��=2 < v

00

< +�=2

�� < u

00

+ v

00

< � :

The (u

00

; v

00

) part of the metri (that is, at onstant angular oordinates) is now onformally

related to Minkowski spae. In the new oordinates the singularities at r = 0 are straight

lines that streth from timelike in�nity in one asymptoti region to timelike in�nity in the

other. The Penrose diagram for the maximally extended Shwarzshild solution thus looks

like this:

I -

I
+

i+i +

I
+

I -

i 0

i - i -

i 0

r = const

t = const

r =
 2

G
M

r = 2G
M

r = 0

r = 0

The only real subtlety about this diagram is the neessity to understand that i

+

and i

�

are

distint from r = 0 (there are plenty of timelike paths that do not hit the singularity). Notie

also that the struture of onformal in�nity is just like that of Minkowski spae, onsistent

with the laim that Shwarzshild is asymptotially at. Also, the Penrose diagram for a

ollapsing star that forms a blak hole is what you might expet, as shown on the next page.

One again the Penrose diagrams for these spaetimes don't really tell us anything we

didn't already know; their usefulness will beome evident when we onsider more general

blak holes. In priniple there ould be a wide variety of types of blak holes, depending on

the proess by whih they were formed. Surprisingly, however, this turns out not to be the

ase; no matter how a blak hole is formed, it settles down (fairly quikly) into a state whih

is haraterized only by the mass, harge, and angular momentum. This property, whih

must be demonstrated individually for the various types of �elds whih one might imagine

go into the onstrution of the hole, is often stated as \blak holes have no hair." You
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i 0

i+

I
+

r = 0

2G
M

r = 0

-i

an demonstrate, for example, that a hole whih is formed from an initially inhomogeneous

ollapse \shakes o�" any lumpiness by emitting gravitational radiation. This is an example

of a \no-hair theorem." If we are interested in the form of the blak hole after it has settled

down, we thus need only to onern ourselves with harged and rotating holes. In both ases

there exist exat solutions for the metri, whih we an examine losely.

But �rst let's take a brief detour to the world of blak hole evaporation. It is strange to

think of a blak hole \evaporating," but in the real world blak holes aren't truly blak |

they radiate energy as if they were a blakbody of temperature T = �h=8�kGM , whereM is

the mass of the hole and k is Boltzmann's onstant. The derivation of this e�et, known as

Hawking radiation, involves the use of quantum �eld theory in urved spaetime and is way

outside our sope right now. The informal idea is nevertheless understandable. In quantum

�eld theory there are \vauum utuations" | the spontaneous reation and annihilation

of partile/antipartile pairs in empty spae. These utuations are preisely analogous to

the zero-point utuations of a simple harmoni osillator. Normally suh utuations are

e

r = 2GM

r

t

+e e-

e-

+
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impossible to detet, sine they average out to give zero total energy (although nobody knows

why; that's the osmologial onstant problem). In the presene of an event horizon, though,

oasionally one member of a virtual pair will fall into the blak hole while its partner esapes

to in�nity. The partile that reahes in�nity will have to have a positive energy, but the

total energy is onserved; therefore the blak hole has to lose mass. (If you like you an

think of the partile that falls in as having a negative mass.) We see the esaping partiles

as Hawking radiation. It's not a very big e�et, and the temperature goes down as the mass

goes up, so for blak holes of mass omparable to the sun it is ompletely negligible. Still,

in priniple the blak hole ould lose all of its mass to Hawking radiation, and shrink to

nothing in the proess. The relevant Penrose diagram might look like this:

i+

i 0

I
+

i -

I
-

r = 0

r = 0

r = 0

radiation

On the other hand, it might not. The problem with this diagram is that \information

is lost" | if we draw a spaelike surfae to the past of the singularity and evolve it into

the future, part of it ends up rashing into the singularity and being destroyed. As a result

the radiation itself ontains less information than the information that was originally in the

spaetime. (This is the worse than a lak of hair on the blak hole. It's one thing to think

that information has been trapped inside the event horizon, but it is more worrisome to think

that it has disappeared entirely.) But suh a proess violates the onservation of information

that is impliit in both general relativity and quantum �eld theory, the two theories that led

to the predition. This paradox is onsidered a big deal these days, and there are a number

of e�orts to understand how the information an somehow be retrieved. A urrently popular

explanation relies on string theory, and basially says that blak holes have a lot of hair,

in the form of virtual stringy states living near the event horizon. I hope you will not be

disappointed to hear that we won't look at this very losely; but you should know what the

problem is and that it is an area of ative researh these days.
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With that out of our system, we now turn to eletrially harged blak holes. These

seem at �rst like reasonable enough objets, sine there is ertainly nothing to stop us

from throwing some net harge into a previously unharged blak hole. In an astrophysial

situation, however, the total amount of harge is expeted to be very small, espeially when

ompared with the mass (in terms of the relative gravitational e�ets). Nevertheless, harged

blak holes provide a useful testing ground for various thought experiments, so they are worth

our onsideration.

In this ase the full spherial symmetry of the problem is still present; we know therefore

that we an write the metri as

ds

2

= �e

2�(r;t)

dt

2

+ e

2�(r;t)

dr

2

+ r

2

d


2

: (7.106)

Now, however, we are no longer in vauum, sine the hole will have a nonzero eletromagneti

�eld, whih in turn ats as a soure of energy-momentum. The energy-momentum tensor

for eletromagnetism is given by

T

��

=

1

4�

(F

��

F

�

�

�

1

4

g

��

F

��

F

��

) ; (7.107)

where F

��

is the eletromagneti �eld strength tensor. Sine we have spherial symmetry,

the most general �eld strength tensor will have omponents

F

tr

= f(r; t) = �F

rt

F

��

= g(r; t) sin � = �F

��

; (7.108)

where f(r; t) and g(r; t) are some funtions to be determined by the �eld equations, and

omponents not written are zero. F

tr

orresponds to a radial eletri �eld, while F

��

orre-

sponds to a radial magneti �eld. (For those of you wondering about the sin �, reall that

the thing whih should be independent of � and � is the radial omponent of the magneti

�eld, B

r

= �

01��

F

��

. For a spherially symmetri metri, �

����

=

1

p

�g

~�

����

is proportional

to (sin �)

�1

, so we want a fator of sin � in F

��

.) The �eld equations in this ase are both

Einstein's equations and Maxwell's equations:

g

��

r

�

F

��

= 0

r

[�

F

��℄

= 0 : (7.109)

The two sets are oupled together, sine the eletromagneti �eld strength tensor enters

Einstein's equations through the energy-momentum tensor, while the metri enters expliitly

into Maxwell's equations.

The diÆulties are not insurmountable, however, and a proedure similar to the one we

followed for the vauum ase leads to a solution for the harged ase as well. We will not
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go through the steps expliitly, but merely quote the �nal answer. The solution is known as

the Reissner-Nordstr�m metri, and is given by

ds

2

= ��dt

2

+�

�1

dr

2

+ r

2

d


2

; (7.110)

where

� = 1 �

2GM

r

+

G(p

2

+ q

2

)

r

2

: (7.111)

In this expression, M is one again interpreted as the mass of the hole; q is the total eletri

harge, and p is the total magneti harge. Isolated magneti harges (monopoles) have never

been observed in nature, but that doesn't stop us from writing down the metri that they

would produe if they did exist. There are good theoretial reasons to think that monopoles

exist, but are extremely rare. (Of ourse, there is also the possibility that a blak hole

ould have magneti harge even if there aren't any monopoles.) In fat the eletri and

magneti harges enter the metri in the same way, so we are not introduing any additional

ompliations by keeping p in our expressions. The eletromagneti �elds assoiated with

this solution are given by

F

tr

= �

q

r

2

F

��

= p sin � : (7.112)

Conservatives are welome to set p = 0 if they like.

The struture of singularities and event horizons is more ompliated in this metri than

it was in Shwarzshild, due to the extra term in the funtion �(r) (whih an be thought of

as measuring \how muh the light ones tip over"). One thing remains the same: at r = 0

there is a true urvature singularity (as ould be heked by omputing the urvature salar

R

����

R

����

). Meanwhile, the equivalent of r = 2GM will be the radius where � vanishes.

This will our at

r

�

= GM �

q

G

2

M

2

�G(p

2

+ q

2

) : (7.113)

This might onstitute two, one, or zero solutions, depending on the relative values of GM

2

and p

2

+ q

2

. We therefore onsider eah ase separately.

Case One | GM

2

< p

2

+ q

2

In this ase the oeÆient � is always positive (never zero), and the metri is ompletely

regular in the (t; r; �; �) oordinates all the way down to r = 0. The oordinate t is always

timelike, and r is always spaelike. But there still is the singularity at r = 0, whih is now a

timelike line. Sine there is no event horizon, there is no obstrution to an observer travelling

to the singularity and returning to report on what was observed. This is known as a naked

singularity, one whih is not shielded by an horizon. A areful analysis of the geodesis
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GM   > p   + q2 2 2

(r)

r- GM r+ 2GM

p = q = 0

(Schwarzschild)

(2)

(1)

(3) 2 2 2

2 2 2GM   < p   + q

GM   = p   + q

r

∆

reveals, however, that the singularity is \repulsive" | timelike geodesis never interset

r = 0, instead they approah and then reverse ourse and move away. (Null geodesis an

reah the singularity, as an non-geodesi timelike urves.)

As r ! 1 the solution approahes at spaetime, and as we have just seen the ausal

struture is \normal" everywhere. The Penrose diagram will therefore be just like that of

Minkowski spae, exept that now r = 0 is a singularity.

i

I

i

I

i -

+

+

0

-

(singularity)

r = 0

The nakedness of the singularity o�ends our sense of deeny, as well as the osmi en-

sorship onjeture, whih roughly states that the gravitational ollapse of physial matter

on�gurations will never produe a naked singularity. (Of ourse, it's just a onjeture, and it

may not be right; there are some laims from numerial simulations that ollapse of spindle-

like on�gurations an lead to naked singularities.) In fat, we should not ever expet to �nd
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a blak hole with GM

2

< p

2

+ q

2

as the result of gravitational ollapse. Roughly speaking,

this ondition states that the total energy of the hole is less than the ontribution to the

energy from the eletromagneti �elds alone | that is, the mass of the matter whih arried

the harge would have had to be negative. This solution is therefore generally onsidered

to be unphysial. Notie also that there are not good Cauhy surfaes (spaelike slies for

whih every inextendible timelike line intersets them) in this spaetime, sine timelike lines

an begin and end at the singularity.

Case Two | GM

2

> p

2

+ q

2

This is the situation whih we expet to apply in real gravitational ollapse; the energy

in the eletromagneti �eld is less than the total energy. In this ase the metri oeÆient

�(r) is positive at large r and small r, and negative inside the two vanishing points r

�

=

GM �

q

G

2

M

2

�G(p

2

+ q

2

). The metri has oordinate singularities at both r

+

and r

�

; in

both ases these ould be removed by a hange of oordinates as we did with Shwarzshild.

The surfaes de�ned by r = r

�

are both null, and in fat they are event horizons (in a

sense we will make preise in a moment). The singularity at r = 0 is a timelike line (not

a spaelike surfae as in Shwarzshild). If you are an observer falling into the blak hole

from far away, r

+

is just like 2GM in the Shwarzshild metri; at this radius r swithes

from being a spaelike oordinate to a timelike oordinate, and you neessarily move in the

diretion of dereasing r. Witnesses outside the blak hole also see the same phenomena

that they would outside an unharged hole | the infalling observer is seen to move more

and more slowly, and is inreasingly redshifted.

But the inevitable fall from r

+

to ever-dereasing radii only lasts until you reah the null

surfae r = r

�

, where r swithes bak to being a spaelike oordinate and the motion in the

diretion of dereasing r an be arrested. Therefore you do not have to hit the singularity

at r = 0; this is to be expeted, sine r = 0 is a timelike line (and therefore not neessarily

in your future). In fat you an hoose either to ontinue on to r = 0, or begin to move

in the diretion of inreasing r bak through the null surfae at r = r

�

. Then r will one

again be a timelike oordinate, but with reversed orientation; you are fored to move in the

diretion of inreasing r. You will eventually be spit out past r = r

+

one more, whih is

like emerging from a white hole into the rest of the universe. From here you an hoose to

go bak into the blak hole | this time, a di�erent hole than the one you entered in the

�rst plae | and repeat the voyage as many times as you like. This little story orresponds

to the aompanying Penrose diagram, whih of ourse an be derived more rigorously by

hoosing appropriate oordinates and analytially extending the Reissner-Nordstr�m metri

as far as it will go.

How muh of this is siene, as opposed to siene �tion? Probably not muh. If you

think about the world as seen from an observer inside the blak hole who is about to ross the

event horizon at r

�

, you will notie that they an look bak in time to see the entire history
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of the external (asymptotially at) universe, at least as seen from the blak hole. But they

see this (in�nitely long) history in a �nite amount of their proper time | thus, any signal

that gets to them as they approah r

�

is in�nitely blueshifted. Therefore it is reasonable

to believe (although I know of no proof) that any non-spherially symmetri perturbation

that omes into a Reissner-Nordstr�m blak hole will violently disturb the geometry we have

desribed. It's hard to say what the atual geometry will look like, but there is no very

good reason to believe that it must ontain an in�nite number of asymptotially at regions

onneting to eah other via various wormholes.

Case Three | GM

2

= p

2

+ q

2

This ase is known as the extreme Reissner-Nordstr�m solution (or simply \extremal

blak hole"). The mass is exatly balaned in some sense by the harge | you an onstrut

exat solutions onsisting of several extremal blak holes whih remain stationary with re-

spet to eah other for all time. On the one hand the extremal hole is an amusing theoretial

toy; these solutions are often examined in studies of the information loss paradox, and the

role of blak holes in quantum gravity. On the other hand it appears very unstable, sine

adding just a little bit of matter will bring it to Case Two.

i 0

i 0

i 0

I
+

I
+

I -

I -r =
 

8

r = 
8

r = 0

r =
 G

M

r = G
M

The extremal blak holes have �(r) = 0 at a single radius, r = GM . This does represent

an event horizon, but the r oordinate is never timelike; it beomes null at r = GM , but is

spaelike on either side. The singularity at r = 0 is a timelike line, as in the other ases. So
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for this blak hole you an again avoid the singularity and ontinue to move to the future

to extra opies of the asymptotially at region, but the singularity is always \to the left."

The Penrose diagram is as shown.

We ould of ourse go into a good deal more detail about the harged solutions, but let's

instead move on to spinning blak holes. It is muh more diÆult to �nd the exat solution

for the metri in this ase, sine we have given up on spherial symmetry. To begin with

all that is present is axial symmetry (around the axis of rotation), but we an also ask for

stationary solutions (a timelike Killing vetor). Although the Shwarzshild and Reissner-

Nordstr�m solutions were disovered soon after general relativity was invented, the solution

for a rotating blak hole was found by Kerr only in 1963. His result, the Kerr metri, is

given by the following mess:

ds

2

= �dt

2

+

�

2

�

dr

2

+ �

2

d�

2

+ (r

2

+ a

2

) sin

2

� d�

2

+

2GMr

�

2

(a sin

2

� d�� dt)

2

; (7.114)

where

�(r) = r

2

� 2GMr + a

2

; (7.115)

and

�

2

(r; �) = r

2

+ a

2

os

2

� : (7.116)

Here a measures the rotation of the hole and M is the mass. It is straightforward to inlude

eletri and magneti harges q and p, simply by replaing 2GMr with 2GMr� (q

2

+p

2

)=G;

the result is the Kerr-Newman metri. All of the interesting phenomena persist in the

absene of harges, so we will set q = p = 0 from now on.

The oordinates (t; r; �; �) are known as Boyer-Lindquist oordinates. It is straight-

forward to hek that as a! 0 they redue to Shwarzshild oordinates. If we keep a �xed

and let M ! 0, however, we reover at spaetime but not in ordinary polar oordinates.

The metri beomes

ds

2

= �dt

2

+

(r

2

+ a

2

os

2

�)

2

(r

2

+ a

2

)

dr

2

+ (r

2

+ a

2

os

2

�)

2

d�

2

+ (r

2

+ a

2

) sin

2

� d�

2

; (7.117)

and we reognize the spatial part of this as at spae in ellipsoidal oordinates.

They are related to Cartesian oordinates in Eulidean 3-spae by

x = (r

2

+ a

2

)

1=2

sin � os(�)

y = (r

2

+ a

2

)

1=2

sin � sin(�)

z = r os � : (7.118)

There are two Killing vetors of the metri (7.114), both of whih are manifest; sine the

metri oeÆients are independent of t and �, both �

�

= �

t

and �

�

= �

�

are Killing vetors.
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r = 

r = 0

= constθ 
const

a

Of ourse �

�

expresses the axial symmetry of the solution. The vetor �

�

is not orthogonal to

t = onstant hypersurfaes, and in fat is not orthogonal to any hypersurfaes at all; hene

this metri is stationary, but not stati. (It's not hanging with time, but it is spinning.)

What is more, the Kerr metri also possesses something alled a Killing tensor. This

is any symmetri (0; n) tensor �

�

1

����

n

whih satis�es

r

(�

�

�

1

����

n

)

= 0 : (7.119)

Simple examples of Killing tensors are the metri itself, and symmetrized tensor produts of

Killing vetors. Just as a Killing vetor implies a onstant of geodesi motion, if there exists

a Killing tensor then along a geodesi we will have

�

�

1

����

n

dx

�

1

d�

� � �

dx

�

n

d�

= onstant : (7.120)

(Unlike Killing vetors, higher-rank Killing tensors do not orrespond to symmetries of the

metri.) In the Kerr geometry we an de�ne the (0; 2) tensor

�

��

= 2�

2

l

(�

n

�)

+ r

2

g

��

: (7.121)

In this expression the two vetors l and n are given (with indies raised) by

l

�

=

1

�

�

r

2

+ a

2

;�; 0; a

�

n

�

=

1

2�

2

�

r

2

+ a

2

;��; 0; a

�

: (7.122)

Both vetors are null and satisfy

l

�

l

�

= 0 ; n

�

n

�

= 0 ; l

�

n

�

= �1 : (7.123)
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(For what it is worth, they are the \speial null vetors" of the Petrov lassi�ation for this

spaetime.) With these de�nitions, you an hek for yourself that �

��

is a Killing tensor.

Let's think about the struture of the full Kerr solution. Singularities seem to appear at

both � = 0 and � = 0; let's turn our attention �rst to � = 0. As in the Reissner-Nordstr�m

solution there are three possibilities: G

2

M

2

> a

2

, G

2

M

2

= a

2

, and G

2

M

2

< a

2

. The last

ase features a naked singularity, and the extremal ase G

2

M

2

= a

2

is unstable, just as in

Reissner-Nordstr�m. Sine these ases are of less physial interest, and time is short, we will

onentrate on G

2

M

2

> a

2

. Then there are two radii at whih � vanishes, given by

r

�

= GM �

p

G

2

M

2

� a

2

: (7.124)

Both radii are null surfaes whih will turn out to be event horizons. The analysis of these

surfaes proeeds in lose analogy with the Reissner-Nordstr�m ase; it is straightforward to

�nd oordinates whih extend through the horizons.

Besides the event horizons at r

�

, the Kerr solution also features an additional surfae

of interest. Reall that in the spherially symmetri solutions, the \timelike" Killing vetor

�

�

= �

t

atually beame null on the (outer) event horizon, and spaelike inside. Cheking

to see where the analogous thing happens for Kerr, we ompute

�

�

�

�

= �

1

�

2

(�� a

2

sin

2

�) : (7.125)

This does not vanish at the outer event horizon; in fat, at r = r

+

(where � = 0), we have

�

�

�

�

=

a

2

�

2

sin

2

� � 0 : (7.126)

So the Killing vetor is already spaelike at the outer horizon, exept at the north and south

poles (� = 0) where it is null. The lous of points where �

�

�

�

= 0 is known as the Killing

horizon, and is given by

(r �GM)

2

= G

2

M

2

� a

2

os

2

� ; (7.127)

while the outer event horizon is given by

(r

+

�GM)

2

= G

2

M

2

� a

2

: (7.128)

There is thus a region in between these two surfaes, known as the ergosphere. Inside the

ergosphere, you must move in the diretion of the rotation of the blak hole (the � diretion);

however, you an still towards or away from the event horizon (and there is no trouble exiting

the ergosphere). It is evidently a plae where interesting things an happen even before you

ross the horizon; more details on this later.
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Before rushing to draw Penrose diagrams, we need to understand the nature of the true

urvature singularity; this does not our at r = 0 in this spaetime, but rather at � = 0.

Sine �

2

= r

2

+ a

2

os

2

� is the sum of two manifestly nonnegative quantities, it an only

vanish when both quantities are zero, or

r = 0 ; � =

�

2

: (7.129)

This seems like a funny result, but remember that r = 0 is not a point in spae, but a disk;

the set of points r = 0, � = �=2 is atually the ring at the edge of this disk. The rotation

has \softened" the Shwarzshild singularity, spreading it out over a ring.

What happens if you go inside the ring? A areful analyti ontinuation (whih we will

not perform) would reveal that you exit to another asymptotially at spaetime, but not an

idential opy of the one you ame from. The new spaetime is desribed by the Kerr metri

with r < 0. As a result, � never vanishes and there are no horizons. The Penrose diagram

is muh like that for Reissner-Nordstr�m, exept now you an pass through the singularity.

Not only do we have the usual strangeness of these distint asymptotially at regions

onneted to ours through the blak hole, but the region near the ring singularity has addi-

tional pathologies: losed timelike urves. If you onsider trajetories whih wind around in

� while keeping � and t onstant and r a small negative value, the line element along suh

a path is

ds

2

= a

2

�

1 +

2GM

r

�

d�

2

; (7.130)

whih is negative for small negative r. Sine these paths are losed, they are obviously

CTC's. You an therefore meet yourself in the past, with all that entails.

Of ourse, everything we say about the analyti extension of Kerr is subjet to the same

aveats we mentioned for Shwarzshild and Reissner-Nordstr�m; it is unlikely that realisti

gravitational ollapse leads to these bizarre spaetimes. It is nevertheless always useful to

have exat solutions. Furthermore, for the Kerr metri there are strange things happening

even if we stay outside the event horizon, to whih we now turn.
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We begin by onsidering more arefully the angular veloity of the hole. Obviously the

onventional de�nition of angular veloity will have to be modi�ed somewhat before we an

apply it to something as abstrat as the metri of spaetime. Let us onsider the fate of a

photon whih is emitted in the � diretion at some radius r in the equatorial plane (� = �=2)

of a Kerr blak hole. The instant it is emitted its momentum has no omponents in the r or

� diretion, and therefore the ondition that it be null is

ds

2

= 0 = g

tt

dt

2

+ g

t�

(dtd�+ d�dt) + g

��

d�

2

: (7.131)

This an be immediately solved to obtain

d�

dt

= �

g

t�

g

��

�

v

u

u

t

 

g

t�

g

��

!

2

�

g

tt

g

��

: (7.132)

If we evaluate this quantity on the Killing horizon of the Kerr metri, we have g

tt

= 0, and

the two solutions are

d�

dt

= 0 ;

d�

dt

=

2a

(2GM)

2

+ a

2

: (7.133)

The nonzero solution has the same sign as a; we interpret this as the photon moving around

the hole in the same diretion as the hole's rotation. The zero solution means that the

photon direted against the hole's rotation doesn't move at all in this oordinate system.

(This isn't a full solution to the photon's trajetory, just the statement that its instantaneous

veloity is zero.) This is an example of the \dragging of inertial frames" mentioned earlier.

The point of this exerise is to note that massive partiles, whih must move more slowly

than photons, are neessarily dragged along with the hole's rotation one they are inside the

Killing horizon. This dragging ontinues as we approah the outer event horizon at r

+

; we

an de�ne the angular veloity of the event horizon itself, 


H

, to be the minimum angular

veloity of a partile at the horizon. Diretly from (7.132) we �nd that




H

=

 

d�

dt

!

�

(r

+

) =

a

r

2

+

+ a

2

: (7.134)

Now let's turn to geodesi motion, whih we know will be simpli�ed by onsidering the

onserved quantities assoiated with the Killing vetors �

�

= �

t

and �

�

= �

�

. For the

purposes at hand we an restrit our attention to massive partiles, for whih we an work

with the four-momentum

p

�

= m

dx

�

d�

; (7.135)

where m is the rest mass of the partile. Then we an take as our two onserved quantities

the atual energy and angular momentum of the partile,

E = ��

�

p

�

= m

 

1 �

2GMr

�

2

!

dt

d�

+

2mGMar

�

2

sin

2

�

d�

d�

(7.136)
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and

L = �

�

p

�

= �

2mGMar

�

2

sin

2

�

dt

d�

+

m(r

2

+ a

2

)

2

�m�a

2

sin

2

�

�

2

sin

2

�

d�

d�

: (7.137)

(These di�er from our previous de�nitions for the onserved quantities, where E and L were

taken to be the energy and angular momentum per unit mass. They are onserved either

way, of ourse.)

The minus sign in the de�nition of E is there beause at in�nity both �

�

and p

�

are

timelike, so their inner produt is negative, but we want the energy to be positive. Inside

the ergosphere, however, �

�

beomes spaelike; we an therefore imagine partiles for whih

E = ��

�

p

�

< 0 : (7.138)

The extent to whih this bothers us is ameliorated somewhat by the realization that all

partiles outside the Killing horizon must have positive energies; therefore a partile inside

the ergosphere with negative energy must either remain on a geodesi inside the Killing

horizon, or be aelerated until its energy is positive if it is to esape.

Still, this realization leads to a way to extrat energy from a rotating blak hole; the

method is known as the Penrose proess. The idea is simple; starting from outside the

ergosphere, you arm yourself with a large rok and leap toward the blak hole. If we all the

four-momentum of the (you + rok) system p

(0)�

, then the energy E

(0)

= ��

�

p

(0)�

is ertainly

positive, and onserved as you move along your geodesi. One you enter the ergosphere,

you hurl the rok with all your might, in a very spei� way. If we all your momentum

p

(1)�

and that of the rok p

(2)�

, then at the instant you throw it we have onservation of

momentum just as in speial relativity:

p

(0)�

= p

(1)�

+ p

(2)�

: (7.139)

Contrating with the Killing vetor �

�

gives

E

(0)

= E

(1)

+ E

(2)

: (7.140)

But, if we imagine that you are arbitrarily strong (and aurate), you an arrange your

throw suh that E

(2)

< 0, as per (7.158). Furthermore, Penrose was able to show that you

an arrange the initial trajetory and the throw suh that afterwards you follow a geodesi

trajetory bak outside the Killing horizon into the external universe. Sine your energy is

onserved along the way, at the end we will have

E

(1)

> E

(0)

: (7.141)

Thus, you have emerged with more energy than you entered with.
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There is no suh thing as a free lunh; the energy you gained ame from somewhere,

and that somewhere is the blak hole. In fat, the Penrose proess extrats energy from the

rotating blak hole by dereasing its angular momentum; you have to throw the rok against

the hole's rotation to get the trik to work. To see this more preisely, de�ne a new Killing

vetor

�

�

= �

�

+ 


H

�

�

: (7.142)

On the outer horizon �

�

is null and tangent to the horizon. (This an be seen from �

�

= �

t

,

�

�

= �

�

, and the de�nition (7.134) of 


H

.) The statement that the partile with momentum

p

(2)�

rosses the event horizon \moving forwards in time" is simply

p

(2)�

�

�

< 0 : (7.143)

Plugging in the de�nitions of E and L, we see that this ondition is equivalent to

L

(2)

<

E

(2)




H

: (7.144)

Sine we have arranged E

(2)

to be negative, and 


H

is positive, we see that the partile must

have a negative angular momentum | it is moving against the hole's rotation. One you

have esaped the ergosphere and the rok has fallen inside the event horizon, the mass and

angular momentum of the hole are what they used to be plus the negative ontributions of

the rok:

ÆM = E

(2)

ÆJ = L

(2)

: (7.145)

Here we have introdued the notation J for the angular momentum of the blak hole; it is

given by

J =Ma : (7.146)
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We won't justify this, but you an look in Wald for an explanation. Then (7.144) beomes

a limit on how muh you an derease the angular momentum:

ÆJ <

ÆM




H

: (7.147)

If we exatly reah this limit, as the rok we throw in beomes more and more null, we have

the \ideal" proess, in whih ÆJ = ÆM=


H

.

We will now use these ideas to prove a powerful result: although you an use the Penrose

proess to extrat energy from the blak hole, you an never derease the area of the event

horizon. For a Kerr metri, one an go through a straightforward omputation (projeting

the metri and volume element and so on) to ompute the area of the event horizon:

A = 4�(r

2

+

+ a

2

) : (7.148)

To show that this doesn't derease, it is most onvenient to work instead in terms of the

irreduible mass of the blak hole, de�ned by

M

2

irr

=

A

16�G

2

=

1

4G

2

(r

2

+

+ a

2

)

=

1

2

�

M

2

+

q

M

4

� (Ma=G)

2

�

=

1

2

�

M

2

+

q

M

4

� (J=G)

2

�

: (7.149)

We an di�erentiate to obtain, after a bit of work,

ÆM

irr

=

a

4G

p

G

2

M

2

� a

2

M

irr

(


�1

H

ÆM � ÆJ) : (7.150)

(I think I have the fators of G right, but it wouldn't hurt to hek.) Then our limit (7.147)

beomes

ÆM

irr

> 0 : (7.151)

The irreduible mass an never be redued; hene the name. It follows that the maximum

amount of energy we an extrat from a blak hole before we slow its rotation to zero is

M �M

irr

=M �

1

p

2

�

M

2

+

q

M

4

� (J=G)

2

�

1=2

: (7.152)

The result of this omplete extration is a Shwarzshild blak hole of mass M

irr

. It turns

out that the best we an do is to start with an extreme Kerr blak hole; then we an get out

approximately 29% of its total energy.
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The irreduibility ofM

irr

leads immediately to the fat that the area A an never derease.

From (7.149) and (7.150) we have

ÆA = 8�G

a




H

p

G

2

M

2

� a

2

(ÆM � 


H

Æ

J

) ; (7.153)

whih an be reast as

ÆM =

�

8�G

ÆA+ 


H

ÆJ ; (7.154)

where we have introdued

� =

p

G

2

M

2

� a

2

2GM(GM +

p

G

2

M

2

� a

2

)

: (7.155)

The quantity � is known as the surfae gravity of the blak hole.

It was equations like (7.154) that �rst started people thinking about the relationship

between blak holes and thermodynamis. Consider the �rst law of thermodynamis,

dU = TdS + work terms : (7.156)

It is natural to think of the term 


H

ÆJ as \work" that we do on the blak hole by throwing

roks into it. Then the thermodynami analogy begins to take shape if we think of identifying

the area A as the entropy S, and the surfae gravity � as 8�G times the temperature

T . In fat, in the ontext of lassial general relativity the analogy is essentially perfet.

The \zeroth" law of thermodynamis states that in thermal equilibrium the temperature is

onstant throughout the system; the analogous statement for blak holes is that stationary

blak holes have onstant surfae gravity on the entire horizon (true). As we have seen,

the �rst law (7.156) is equivalent to (7.154). The seond law, that entropy never dereases,

is simply the statement that the area of the horizon never dereases. Finally, the third

law is that it is impossible to ahieve T = 0 in any physial proess, whih should imply

that it is impossible to ahieve � = 0 in any physial proess. It turns out that � = 0

orresponds to the extremal blak holes (either in Kerr or Reissner-Nordstr�m) | where

the naked singularities would appear. Somehow, then, the third law is related to osmi

ensorship.

The missing piee is that real thermodynami bodies don't just sit there; they give o�

blakbody radiation with a spetrum that depends on their temperature. Blak holes, it was

thought before Hawking disovered his radiation, don't do that, sine they're truly blak.

Historially, Bekenstein ame up with the idea that blak holes should really be honest blak

bodies, inluding the radiation at the appropriate temperature. This annoyed Hawking, who

set out to prove him wrong, and ended up proving that there would be radiation after all.

So the thermodynami analogy is even better than we had any right to expet | although

it is safe to say that nobody really knows why.
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8 Cosmology

Contemporary osmologial models are based on the idea that the universe is pretty muh

the same everywhere | a stane sometimes known as the Copernian priniple. On the

fae of it, suh a laim seems preposterous; the enter of the sun, for example, bears little

resemblane to the desolate old of interstellar spae. But we take the Copernian priniple

to only apply on the very largest sales, where loal variations in density are averaged

over. Its validity on suh sales is manifested in a number of di�erent observations, suh

as number ounts of galaxies and observations of di�use X-ray and -ray bakgrounds, but

is most lear in the 3

Æ

mirowave bakground radiation. Although we now know that the

mirowave bakground is not perfetly smooth (and nobody ever expeted that it was), the

deviations from regularity are on the order of 10

�5

or less, ertainly an adequate basis for

an approximate desription of spaetime on large sales.

The Copernian priniple is related to two more mathematially preise properties that

a manifold might have: isotropy and homogeneity. Isotropy applies at some spei� point

in the spae, and states that the spae looks the same no matter what diretion you look in.

More formally, a manifold M is isotropi around a point p if, for any two vetors V and W

in T

p

M , there is an isometry of M suh that the pushforward of W under the isometry is

parallel with V (not pushed forward). It is isotropy whih is indiated by the observations

of the mirowave bakground.

Homogeneity is the statement that the metri is the same throughout the spae. In

other words, given any two points p and q in M , there is an isometry whih takes p into q.

Note that there is no neessary relationship between homogeneity and isotropy; a manifold

an be homogeneous but nowhere isotropi (suh as R � S

2

in the usual metri), or it an

be isotropi around a point without being homogeneous (suh as a one, whih is isotropi

around its vertex but ertainly not homogeneous). On the other hand, if a spae is isotropi

everywhere then it is homogeneous. (Likewise if it is isotropi around one point and also

homogeneous, it will be isotropi around every point.) Sine there is ample observational

evidene for isotropy, and the Copernian priniple would have us believe that we are not

the enter of the universe and therefore observers elsewhere should also observe isotropy, we

will heneforth assume both homogeneity and isotropy.

There is one ath. When we look at distant galaxies, they appear to be reeding from us;

the universe is apparently not stati, but hanging with time. Therefore we begin onstru-

tion of osmologial models with the idea that the universe is homogeneous and isotropi in

spae, but not in time. In general relativity this translates into the statement that the uni-

verse an be foliated into spaelike slies suh that eah slie is homogeneous and isotropi.
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We therefore onsider our spaetime to be R � �, where R represents the time diretion

and � is a homogeneous and isotropi three-manifold. The usefulness of homogeneity and

isotropy is that they imply that � must be a maximally symmetri spae. (Think of isotropy

as invariane under rotations, and homogeneity as invariane under translations. Then ho-

mogeneity and isotropy together imply that a spae has its maximum possible number of

Killing vetors.) Therefore we an take our metri to be of the form

ds

2

= �dt

2

+ a

2

(t)

ij

(u)du

i

du

j

: (8.1)

Here t is the timelike oordinate, and (u

1

; u

2

; u

3

) are the oordinates on �; 

ij

is the max-

imally symmetri metri on �. This formula is a speial ase of (7.2), whih we used to

derive the Shwarzshild metri, exept we have saled t suh that g

tt

= �1. The funtion

a(t) is known as the sale fator, and it tells us \how big" the spaelike slie � is at the

moment t. The oordinates used here, in whih the metri is free of ross terms dtdu

i

and

the spaelike omponents are proportional to a single funtion of t, are known as omoving

oordinates, and an observer who stays at onstant u

i

is also alled \omoving". Only

a omoving observer will think that the universe looks isotropi; in fat on Earth we are

not quite omoving, and as a result we see a dipole anisotropy in the osmi mirowave

bakground as a result of the onventional Doppler e�et.

Our interest is therefore in maximally symmetri Eulidean three-metris 

ij

. We know

that maximally symmetri metris obey

(3)

R

ijkl

= k(

ik



jl

� 

il



jk

) ; (8.2)

where k is some onstant, and we put a supersript

(3)

on the Riemann tensor to remind us

that it is assoiated with the three-metri 

ij

, not the metri of the entire spaetime. The

Rii tensor is then

(3)

R

jl

= 2k

jl

: (8.3)

If the spae is to be maximally symmetri, then it will ertainly be spherially symmetri.

We already know something about spherially symmetri spaes from our exploration of the

Shwarzshild solution; the metri an be put in the form

d�

2

= 

ij

du

i

du

j

= e

2�(r)

dr

2

+ r

2

(d�

2

+ sin

2

� d�

2

) : (8.4)

The omponents of the Rii tensor for suh a metri an be obtained from (7.16), the Rii

tensor for a spherially symmetri spaetime, by setting � = 0 and �

0

� = 0, whih gives

(3)

R

11

=

2

r

�

1

�

(3)

R

22

= e

�2�

(r�

1

� � 1) + 1

(3)

R

33

= [e

�2�

(r�

1

� � 1) + 1℄ sin

2

� : (8.5)
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We set these proportional to the metri using (8.3), and an solve for �(r):

� = �

1

2

ln(1 � kr

2

) : (8.6)

This gives us the following metri on spaetime:

ds

2

= �dt

2

+ a

2

(t)

"

dr

2

1 � kr

2

+ r

2

(d�

2

+ sin

2

� d�

2

)

#

: (8.7)

This is the Robertson-Walker metri. We have not yet made use of Einstein's equations;

those will determine the behavior of the sale fator a(t).

Note that the substitutions

k !

k

jkj

r !

q

jkj r

a !

a

p

jkj

(8.8)

leave (8.7) invariant. Therefore the only relevant parameter is k=jkj, and there are three

ases of interest: k = �1, k = 0, and k = +1. The k = �1 ase orresponds to onstant

negative urvature on �, and is alled open; the k = 0 ase orresponds to no urvature on

�, and is alled at; the k = +1 ase orresponds to positive urvature on �, and is alled

losed.

Let us examine eah of these possibilities. For the at ase k = 0 the metri on � is

d�

2

= dr

2

+ r

2

d


2

= dx

2

+ dy

2

+ dz

2

; (8.9)

whih is simply at Eulidean spae. Globally, it ould desribe R

3

or a more ompliated

manifold, suh as the three-torus S

1

� S

1

� S

1

. For the losed ase k = +1 we an de�ne

r = sin� to write the metri on � as

d�

2

= d�

2

+ sin

2

�d


2

; (8.10)

whih is the metri of a three-sphere. In this ase the only possible global struture is

atually the three-sphere (exept for the non-orientable manifold RP

3

). Finally in the open

k = �1 ase we an set r = sinh to obtain

d�

2

= d 

2

+ sinh

2

 d


2

: (8.11)

This is the metri for a three-dimensional spae of onstant negative urvature; it is hard

to visualize, but think of the saddle example we spoke of in Setion Three. Globally suh

a spae ould extend forever (whih is the origin of the word \open"), but it ould also
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desribe a non-simply-onneted ompat spae (so \open" is really not the most aurate

desription).

With the metri in hand, we an set about omputing the onnetion oeÆients and

urvature tensor. Setting _a � da=dt, the Christo�el symbols are given by

�

0

11

=

a _a

1 � kr

2

�

0

22

= a _ar

2

�

0

33

= a _ar

2

sin

2

�

�

1

01

= �

1

10

= �

2

02

= �

2

20

= �

3

03

= �

3

30

=

_a

a

�

1

22

= �r(1 � kr

2

) �

1

33

= �r(1� kr

2

) sin

2

�

�

2

12

= �

2

21

= �

3

13

= �

3

31

=

1

r

�

2

33

= � sin � os � �

3

23

= �

3

32

= ot � : (8.12)

The nonzero omponents of the Rii tensor are

R

00

= �3

�a

a

R

11

=

a�a+ 2_a

2

+ 2k

1 � kr

2

R

22

= r

2

(a�a+ 2_a

2

+ 2k)

R

33

= r

2

(a�a+ 2_a

2

+ 2k) sin

2

� ; (8.13)

and the Rii salar is then

R =

6

a

2

(a�a+ _a

2

+ k) : (8.14)

The universe is not empty, so we are not interested in vauum solutions to Einstein's

equations. We will hoose to model the matter and energy in the universe by a perfet

uid. We disussed perfet uids in Setion One, where they were de�ned as uids whih

are isotropi in their rest frame. The energy-momentum tensor for a perfet uid an be

written

T

��

= (p+ �)U

�

U

�

+ pg

��

; (8.15)

where � and p are the energy density and pressure (respetively) as measured in the rest

frame, and U

�

is the four-veloity of the uid. It is lear that, if a uid whih is isotropi in

some frame leads to a metri whih is isotropi in some frame, the two frames will oinide;

that is, the uid will be at rest in omoving oordinates. The four-veloity is then

U

�

= (1; 0; 0; 0) ; (8.16)

and the energy-momentum tensor is

T

��

=

0

B

B

B

�

� 0 0 0

0

0 g

ij

p

0

1

C

C

C

A

: (8.17)
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With one index raised this takes the more onvenient form

T

�

�

= diag(��; p; p; p) : (8.18)

Note that the trae is given by

T = T

�

�

= ��+ 3p : (8.19)

Before plugging in to Einstein's equations, it is eduational to onsider the zero ompo-

nent of the onservation of energy equation:

0 = r

�

T

�

0

= �

�

T

�

0

+ �

�

�0

T

0

0

� �

�

�0

T

�

�

= ��

0

�� 3

_a

a

(�+ p) : (8.20)

To make progress it is neessary to hoose an equation of state, a relationship between �

and p. Essentially all of the perfet uids relevant to osmology obey the simple equation of

state

p = w� ; (8.21)

where w is a onstant independent of time. The onservation of energy equation beomes

_�

�

= �3(1 + w)

_a

a

; (8.22)

whih an be integrated to obtain

� / a

�3(1+w)

: (8.23)

The two most popular examples of osmologial uids are known as dust and radiation.

Dust is ollisionless, nonrelativisti matter, whih obeys w = 0. Examples inlude ordinary

stars and galaxies, for whih the pressure is negligible in omparison with the energy density.

Dust is also known as \matter", and universes whose energy density is mostly due to dust

are known as matter-dominated. The energy density in matter falls o� as

� / a

�3

: (8.24)

This is simply interpreted as the derease in the number density of partiles as the universe

expands. (For dust the energy density is dominated by the rest energy, whih is proportional

to the number density.) \Radiation" may be used to desribe either atual eletromagneti

radiation, or massive partiles moving at relative veloities suÆiently lose to the speed of

light that they beome indistinguishable from photons (at least as far as their equation of

state is onerned). Although radiation is a perfet uid and thus has an energy-momentum
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tensor given by (8.15), we also know that T

��

an be expressed in terms of the �eld strength

as

T

��

=

1

4�

(F

��

F

�

�

�

1

4

g

��

F

��

F

��

) : (8.25)

The trae of this is given by

T

�

�

=

1

4�

�

F

��

F

��

�

1

4

(4)F

��

F

��

�

= 0 : (8.26)

But this must also equal (8.19), so the equation of state is

p =

1

3

� : (8.27)

A universe in whih most of the energy density is in the form of radiation is known as

radiation-dominated. The energy density in radiation falls o� as

� / a

�4

: (8.28)

Thus, the energy density in radiation falls o� slightly faster than that in matter; this is

beause the number density of photons dereases in the same way as the number density of

nonrelativisti partiles, but individual photons also lose energy as a

�1

as they redshift, as

we will see later. (Likewise, massive but relativisti partiles will lose energy as they \slow

down" in omoving oordinates.) We believe that today the energy density of the universe

is dominated by matter, with �

mat

=�

rad

� 10

6

. However, in the past the universe was muh

smaller, and the energy density in radiation would have dominated at very early times.

There is one other form of energy-momentum that is sometimes onsidered, namely that

of the vauum itself. Introduing energy into the vauum is equivalent to introduing a

osmologial onstant. Einstein's equations with a osmologial onstant are

G

��

= 8�GT

��

� �g

��

; (8.29)

whih is learly the same form as the equations with no osmologial onstant but an energy-

momentum tensor for the vauum,

T

(va)

��

= �

�

8�G

g

��

: (8.30)

This has the form of a perfet uid with

� = �p =

�

8�G

: (8.31)

We therefore have w = �1, and the energy density is independent of a, whih is what we

would expet for the energy density of the vauum. Sine the energy density in matter and
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radiation dereases as the universe expands, if there is a nonzero vauum energy it tends

to win out over the long term (as long as the universe doesn't start ontrating). If this

happens, we say that the universe beomes vauum-dominated.

We now turn to Einstein's equations. Reall that they an be written in the form (4.45):

R

��

= 8�G

�

T

��

�

1

2

g

��

T

�

: (8.32)

The �� = 00 equation is

� 3

�a

a

= 4�G(� + 3p) ; (8.33)

and the �� = ij equations give

�a

a

+ 2

�

_a

a

�

2

+ 2

k

a

2

= 4�G(�� p) : (8.34)

(There is only one distint equation from �� = ij, due to isotropy.) We an use (8.33) to

eliminate seond derivatives in (8.34), and do a little leaning up to obtain

�a

a

= �

4�G

3

(�+ 3p) ; (8.35)

and

�

_a

a

�

2

=

8�G

3

��

k

a

2

: (8.36)

Together these are known as the Friedmann equations, and metris of the form (8.7)

whih obey these equations de�ne Friedmann-Robertson-Walker (FRW) universes.

There is a bunh of terminology whih is assoiated with the osmologial parameters,

and we will just introdue the basis here. The rate of expansion is haraterized by the

Hubble parameter,

H =

_a

a

: (8.37)

The value of the Hubble parameter at the present epoh is the Hubble onstant, H

0

. There

is urrently a great deal of ontroversy about what its atual value is, with measurements

falling in the range of 40 to 90 km/se/Mp. (\Mp" stands for \megaparse", whih is

3 � 10

24

m.) Note that we have to divide _a by a to get a measurable quantity, sine the

overall sale of a is irrelevant. There is also the deeleration parameter,

q = �

a�a

_a

2

; (8.38)

whih measures the rate of hange of the rate of expansion.

Another useful quantity is the density parameter,


 =

8�G

3H

2

�
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=

�

�

rit

; (8.39)

where the ritial density is de�ned by

�

rit

=

3H

2

8�G

: (8.40)

This quantity (whih will generally hange with time) is alled the \ritial" density beause

the Friedmann equation (8.36) an be written


 � 1 =

k

H

2

a

2

: (8.41)

The sign of k is therefore determined by whether 
 is greater than, equal to, or less than

one. We have

� < �

rit

$ 
 < 1 $ k = �1 $ open

� = �

rit

$ 
 = 1 $ k = 0 $ at

� > �

rit

$ 
 > 1 $ k = +1 $ losed :

The density parameter, then, tells us whih of the three Robertson-Walker geometries de-

sribes our universe. Determining it observationally is an area of intense investigation.

It is possible to solve the Friedmann equations exatly in various simple ases, but it

is often more useful to know the qualitative behavior of various possibilities. Let us for

the moment set � = 0, and onsider the behavior of universes �lled with uids of positive

energy (� > 0) and nonnegative pressure (p � 0). Then by (8.35) we must have �a < 0.

Sine we know from observations of distant galaxies that the universe is expanding ( _a > 0),

this means that the universe is \deelerating." This is what we should expet, sine the

gravitational attration of the matter in the universe works against the expansion. The fat

that the universe an only deelerate means that it must have been expanding even faster

in the past; if we trae the evolution bakwards in time, we neessarily reah a singularity

at a = 0. Notie that if �a were exatly zero, a(t) would be a straight line, and the age of

the universe would be H

�1

0

. Sine �a is atually negative, the universe must be somewhat

younger than that.

This singularity at a = 0 is the Big Bang. It represents the reation of the universe

from a singular state, not explosion of matter into a pre-existing spaetime. It might be

hoped that the perfet symmetry of our FRW universes was responsible for this singularity,

but in fat it's not true; the singularity theorems predit that any universe with � > 0 and

p � 0 must have begun at a singularity. Of ourse the energy density beomes arbitrarily

high as a! 0, and we don't expet lassial general relativity to be an aurate desription

of nature in this regime; hopefully a onsistent theory of quantum gravity will be able to �x

things up.
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now

Big
Bang

a(t)

t

-1H
0

The future evolution is di�erent for di�erent values of k. For the open and at ases,

k � 0, (8.36) implies

_a

2

=

8�G

3

�a

2

+ jkj : (8.42)

The right hand side is stritly positive (sine we are assuming � > 0), so _a never passes

through zero. Sine we know that today _a > 0, it must be positive for all time. Thus,

the open and at universes expand forever | they are temporally as well as spatially open.

(Please keep in mind what assumptions go into this | namely, that there is a nonzero

positive energy density. Negative energy density universes do not have to expand forever,

even if they are \open".)

How fast do these universes keep expanding? Consider the quantity �a

3

(whih is onstant

in matter-dominated universes). By the onservation of energy equation (8.20) we have

d

dt

(�a

3

) = a

3

�

_�+ 3�

_a

a

�

= �3pa

2

_a : (8.43)

The right hand side is either zero or negative; therefore

d

dt

(�a

3

) � 0 : (8.44)

This implies in turn that �a

2

must go to zero in an ever-expanding universe, where a!1.

Thus (8.42) tells us that

_a

2

! jkj : (8.45)

(Remember that this is true for k � 0.) Thus, for k = �1 the expansion approahes the

limiting value _a ! 1, while for k = 0 the universe keeps expanding, but more and more

slowly.
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For the losed universes (k = +1), (8.36) beomes

_a

2

=

8�G

3

�a

2

� 1 : (8.46)

The argument that �a

2

! 0 as a ! 1 still applies; but in that ase (8.46) would be-

ome negative, whih an't happen. Therefore the universe does not expand inde�nitely; a

possesses an upper bound a

max

. As a approahes a

max

, (8.35) implies

�a!�

4�G

3

(� + 3p)a

max

< 0 : (8.47)

Thus �a is �nite and negative at this point, so a reahes a

max

and starts dereasing, whereupon

(sine �a < 0) it will inevitably ontinue to ontrat to zero | the Big Crunh. Thus, the

losed universes (again, under our assumptions of positive � and nonnegative p) are losed

in time as well as spae.

a(t)

t

nowbang crunch

k = 0

k = -1

k = +1

We will now list some of the exat solutions orresponding to only one type of energy

density. For dust-only universes (p = 0), it is onvenient to de�ne a development angle

�(t), rather than using t as a parameter diretly. The solutions are then, for open universes,

(

a =

C

2

(osh�� 1)

t =

C

2

(sinh�� �)

(k = �1) ; (8.48)

for at universes,

a =

�

9C

4

�

1=3

t

2=3

(k = 0) ; (8.49)

and for losed universes,

(

a =

C

2

(1� os�)

t =

C

2

(�� sin �)

(k = +1) ; (8.50)
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where we have de�ned

C =

8�G

3

�a

3

= onstant : (8.51)

For universes �lled with nothing but radiation, p =

1

3

�, we have one again open universes,

a =

p

C

0

2

4

 

1 +

t

p

C

0

!

2

� 1

3

5

1=2

(k = �1) ; (8.52)

at universes,

a = (4C

0

)

1=4

t

1=2

(k = 0) ; (8.53)

and losed universes,

a =

p

C

0

2

4

1�

 

1�

t

p

C

0

!

2

3

5

1=2

(k = +1) ; (8.54)

where this time we de�ned

C

0

=

8�G

3

�a

4

= onstant : (8.55)

You an hek for yourselves that these exat solutions have the properties we argued would

hold in general.

For universes whih are empty save for the osmologial onstant, either � or p will be

negative, in violation of the assumptions we used earlier to derive the general behavior of

a(t). In this ase the onnetion between open/losed and expands forever/reollapses is

lost. We begin by onsidering � < 0. In this ase 
 is negative, and from (8.41) this an

only happen if k = �1. The solution in this ase is

a =

s

�3

�

sin

0

�

s

��

3

t

1

A

: (8.56)

There is also an open (k = �1) solution for � > 0, given by

a =

s

3

�

sinh

0

�

s

�

3

t

1

A

: (8.57)

A at vauum-dominated universe must have � > 0, and the solution is

a / exp

0

�

�

s

�

3

t

1

A

; (8.58)

while the losed universe must also have � > 0, and satis�es

a =

s

3

�

osh

0

�

s

�

3

t

1

A

: (8.59)



8 COSMOLOGY 228

These solutions are a little misleading. In fat the three solutions for � > 0 | (8.57), (8.58),

and (8.59) | all represent the same spaetime, just in di�erent oordinates. This spaetime,

known as de Sitter spae, is atually maximally symmetri as a spaetime. (See Hawking

and Ellis for details.) The � < 0 solution (8.56) is also maximally symmetri, and is known

as anti-de Sitter spae.

It is lear that we would like to observationally determine a number of quantities to deide

whih of the FRWmodels orresponds to our universe. Obviously we would like to determine

H

0

, sine that is related to the age of the universe. (For a purely matter-dominated, k = 0

universe, (8.49) implies that the age is 2=(3H

0

). Other possibilities would predit similar

relations.) We would also like to know 
, whih determines k through (8.41). Given the

de�nition (8.39) of 
, this means we want to know both H

0

and �

0

. Unfortunately both

quantities are hard to measure aurately, espeially �. But notie that the deeleration

parameter q an be related to 
 using (8.35):

q = �

a�a

_a

2

= �H

�2

�a

a

=

4�G

3H

2

(�+ 3p)

=

4�G

3H

2

�(1 + 3w)

=

1 + 3w

2


 : (8.60)

Therefore, if we think we know what w is (i.e., what kind of stu� the universe is made of),

we an determine 
 by measuring q. (Unfortunately we are not ompletely on�dent that

we know w, and q is itself hard to measure. But people are trying.)

To understand how these quantities might oneivably be measured, let's onsider geo-

desi motion in an FRW universe. There are a number of spaelike Killing vetors, but no

timelike Killing vetor to give us a notion of onserved energy. There is, however, a Killing

tensor. If U

�

= (1; 0; 0; 0) is the four-veloity of omoving observers, then the tensor

K

��

= a

2

(g

��

+ U

�

U

�

) (8.61)

satis�es r

(�

K

��)

= 0 (as you an hek), and is therefore a Killing tensor. This means that

if a partile has four-veloity V

�

= dx

�

=d�, the quantity

K

2

= K

��

V

�

V

�

= a

2

[V

�

V

�

+ (U

�

V

�

)

2

℄ (8.62)

will be a onstant along geodesis. Let's think about this, �rst for massive partiles. Then

we will have V

�

V

�

= �1, or

(V

0

)

2

= 1 + j

~

V j

2

; (8.63)
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where j

~

V j

2

= g

ij

V

i

V

j

. So (8.61) implies

j

~

V j =

K

a

: (8.64)

The partile therefore \slows down" with respet to the omoving oordinates as the universe

expands. In fat this is an atual slowing down, in the sense that a gas of partiles with

initially high relative veloities will ool down as the universe expands.

A similar thing happens to null geodesis. In this ase V

�

V

�

= 0, and (8.62) implies

U

�

V

�

=

K

a

: (8.65)

But the frequeny of the photon as measured by a omoving observer is ! = �U

�

V

�

. The

frequeny of the photon emitted with frequeny !

1

will therefore be observed with a lower

frequeny !

0

as the universe expands:

!

0

!

1

=

a

1

a

0

: (8.66)

Cosmologists like to speak of this in terms of the redshift z between the two events, de�ned

by the frational hange in wavelength:

z =

�

0

� �

1

�

1

=

a

0

a

1

� 1 : (8.67)

Notie that this redshift is not the same as the onventional Doppler e�et; it is the expansion

of spae, not the relative veloities of the observer and emitter, whih leads to the redshift.

The redshift is something we an measure; we know the rest-frame wavelengths of various

spetral lines in the radiation from distant galaxies, so we an tell how muh their wavelengths

have hanged along the path from time t

1

when they were emitted to time t

0

when they were

observed. We therefore know the ratio of the sale fators at these two times. But we don't

know the times themselves; the photons are not lever enough to tell us how muh oordinate

time has elapsed on their journey. We have to work harder to extrat this information.

Roughly speaking, sine a photon moves at the speed of light its travel time should simply

be its distane. But what is the \distane" of a far away galaxy in an expanding universe?

The omoving distane is not espeially useful, sine it is not measurable, and furthermore

beause the galaxies need not be omoving in general. Instead we an de�ne the luminosity

distane as

d

2

L

=

L

4�F

; (8.68)

where L is the absolute luminosity of the soure and F is the ux measured by the observer

(the energy per unit time per unit area of some detetor). The de�nition omes from the
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fat that in at spae, for a soure at distane d the ux over the luminosity is just one

over the area of a sphere entered around the soure, F=L = 1=A(d) = 1=4�d

2

. In an FRW

universe, however, the ux will be diluted. Conservation of photons tells us that the total

number of photons emitted by the soure will eventually pass through a sphere at omoving

distane r from the emitter. Suh a sphere is at a physial distane d = a

0

r, where a

0

is

the sale fator when the photons are observed. But the ux is diluted by two additional

e�ets: the individual photons redshift by a fator (1 + z), and the photons hit the sphere

less frequently, sine two photons emitted a time Æt apart will be measured at a time (1+z)Æt

apart. Therefore we will have

F

L

=

1

4�a

2

0

r

2

(1 + z)

2

; (8.69)

or

d

L

= a

0

r(1 + z) : (8.70)

The luminosity distane d

L

is something we might hope to measure, sine there are some

astrophysial soures whose absolute luminosities are known (\standard andles"). But r is

not observable, so we have to remove that from our equation. On a null geodesi (hosen to

be radial for onveniene) we have

0 = ds

2

= �dt

2

+

a

2

1� kr

2

dr

2

; (8.71)

or

Z

t

0

t

1

dt

a(t)

=

Z

r

0

dr

(1� kr

2

)

1=2

: (8.72)

For galaxies not too far away, we an expand the sale fator in a Taylor series about its

present value:

a(t

1

) = a

0

+ (_a)

0

(t

1

� t

0

) +

1

2

(�a)

0

(t

1

� t

0

)

2

+ : : : : (8.73)

We an then expand both sides of (8.72) to �nd

r = a

�1

0

�

(t

0

� t

1

) +

1

2

H

0

(t

0

� t

1

)

2

+ : : :

�

: (8.74)

Now remembering (8.67), the expansion (8.73) is the same as

1

1 + z

= 1 +H

0

(t

1

� t

0

)�

1

2

q

0

H

2

0

(t

1

� t

0

)

2

+ : : : : (8.75)

For small H

0

(t

1

� t

0

) this an be inverted to yield

t

0

� t

1

= H

�1

0

�

z �

�

1 +

q

0

2

�

z

2

+ : : :

�

: (8.76)
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Substituting this bak again into (8.74) gives

r =

1

a

0

H

0

�

z �

1

2

(1 + q

0

) z

2

+ : : :

�

: (8.77)

Finally, using this in (8.70) yields Hubble's Law:

d

L

= H

�1

0

�

z +

1

2

(1� q

0

)z

2

+ : : :

�

: (8.78)

Therefore, measurement of the luminosity distanes and redshifts of a suÆient number of

galaxies allows us to determine H

0

and q

0

, and therefore takes us a long way to deiding

what kind of FRW universe we live in. The observations themselves are extremely diÆult,

and the values of these parameters in the real world are still hotly ontested. Over the next

deade or so a variety of new strategies and more preise appliation of old strategies ould

very well answer these questions one and for all.


